首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nebeský in [12] show that for any simple graph with n ≥ 5 vertices, either G or Gc contains an eulerian subgraph with order at least n - 1, with an explicitly described class of exceptional graphs. In this note, we show that if G is a simple graph with n ≥ 61 vertices, then either G or Gc is supereulerian, with some exceptions. We also characterize all these exceptional cases. These results are applied to show that if G is a simple graph with n ≥ 61 vertices such that both G and Gc are connected, then either G or Gc has a 4-flow, or both G and Gc have cut-edges. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
A set of vertices S in a graph is convex if it contains all vertices which belong to shortest paths between vertices in S. The convexity number c(G) of a graph G is the maximum cardinality of a convex set of vertices which does not contain all vertices of G. We prove NP-completeness of the problem to decide for a given bipartite graph G and an integer k whether c(G) ≥ k. Furthermore, we identify natural necessary extension properties of graphs of small convexity number and study the interplay between these properties and upper bounds on the convexity number.  相似文献   

3.
The center of a graph is the set of vertices with minimum eccentricity. Graphs in which all vertices are central are called self-centered graphs. In this paper almost self-centered (ASC) graphs are introduced as the graphs with exactly two non-central vertices. The block structure of these graphs is described and constructions for generating such graphs are proposed. Embeddings of arbitrary graphs into ASC graphs are studied. In particular it is shown that any graph can be embedded into an ASC graph of prescribed radius. Embeddings into ASC graphs of radius two are studied in more detail. ASC index of a graph G is introduced as the smallest number of vertices needed to add to G such that G is an induced subgraph of an ASC graph.  相似文献   

4.
In this paper we describe a simple model for random graphs that have an n-fold covering map onto a fixed finite base graph. Roughly, given a base graph G and an integer n, we form a random graph by replacing each vertex of G by a set of n vertices, and joining these sets by random matchings whenever the corresponding vertices are adjacent in G. The resulting graph covers the original graph in the sense that the two are locally isomorphic. We suggest possible applications of the model, such as constructing graphs with extremal properties in a more controlled fashion than offered by the standard random models, and also "randomizing" given graphs. The main specific result that we prove here (Theorem 1) is that if is the smallest vertex degree in G, then almost all n-covers of G are -connected. In subsequent papers we will address other graph properties, such as girth, expansion and chromatic number. Received June 21, 1999/Revised November 16, 2000 RID="*" ID="*" Work supported in part by grants from the Israel Academy of Aciences and the Binational Israel-US Science Foundation.  相似文献   

5.
Planar graphs and poset dimension   总被引:4,自引:0,他引:4  
Walter Schnyder 《Order》1989,5(4):323-343
We view the incidence relation of a graph G=(V. E) as an order relation on its vertices and edges, i.e. a<G b if and only of a is a vertex and b is an edge incident on a. This leads to the definition of the order-dimension of G as the minimum number of total orders on V E whose intersection is <G. Our main result is the characterization of planar graphs as the graphs whose order-dimension does not exceed three. Strong versions of several known properties of planar graphs are implied by this characterization. These properties include: each planar graph has arboricity at most three and each planar graph has a plane embedding whose edges are straight line segments. A nice feature of this embedding is that the coordinates of the vertices have a purely combinatorial meaning.  相似文献   

6.
Hong Wang 《Combinatorica》1998,18(3):441-447
. Our main result is as follows: For any integer , if G is a claw-free graph of order at least and with minimum degree at least 3, then G contains k vertex-disjoint triangles unless G is of order and G belongs to a known class of graphs. We also construct a claw-free graph with minimum degree 3 on n vertices for each such that it does not contain k vertex-disjoint triangles. We put forward a conjecture on vertex-disjoint triangles in -free graphs. Received: November 21, 1996/Revised: Revised February 19, 1998  相似文献   

7.
For a graph G, p(G) denotes the order of a longest path in G and c(G) the order of a longest cycle. We show that if G is a connected graph n ≥ 3 vertices such that d(u) + d(v) + d(w) ≧ n for all triples u, v, w of independent vertices, then G satisfies c(G) ≥ p(G) – 1, or G is in one of six families of exceptional graphs. This generalizes results of Bondy and of Bauer, Morgana, Schmeichel, and Veldman. © 1995, John Wiley & Sons, Inc.  相似文献   

8.
Consider an eigenvector of the adjacency matrix of a G(n,p) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a nonleading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other.  相似文献   

9.
Two variations of set intersection representation are investigated and upper and lower bounds on the minimum number of labels with which a graph may be represented are found that hold for almost all graphs. Specifically, if θk(G) is defined to be the minimum number of labels with which G may be represented using the rule that two vertices are adjacent if and only if they share at least k labels, there exist positive constants ck and c′k such that almost every graph G on n vertices satisfies Changing the representation only slightly by defining θ;odd (G) to be the minimum number of labels with which G can be represented using the rule that two vertices are adjacent if and only if they share an odd number of labels results in quite different behavior. Namely, almost every graph G satisfies Furthermore, the upper bound on θodd(G) holds for every graph. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
《Journal of Graph Theory》2018,87(4):526-535
A graph G is hypohamiltonian/hypotraceable if it is not hamiltonian/traceable, but all vertex‐deleted subgraphs of G are hamiltonian/traceable. All known hypotraceable graphs are constructed using hypohamiltonian graphs; here we present a construction that uses so‐called almost hypohamiltonian graphs (nonhamiltonian graphs, whose vertex‐deleted subgraphs are hamiltonian with exactly one exception, see [15]). This construction is an extension of a method of Thomassen [11]. As an application, we construct a planar hypotraceable graph of order 138, improving the best‐known bound of 154 [8]. We also prove a structural type theorem showing that hypotraceable graphs possessing some connectivity properties are all built using either Thomassen's or our method. We also prove that if G is a Grinbergian graph without a triangular region, then G is not maximal nonhamiltonian and using the proof method we construct a hypohamiltonian graph of order 36 with crossing number 1, improving the best‐known bound of 46 [14].  相似文献   

11.
Matching graphs     
The matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings in G and where two vertices M1 and M2 of M(G) are adjacent if and only if |M1M2| = 1. When M(G) is connected, this graph models a metric space whose metric is defined on the set of maximum matchings in G. Which graphs are matching graphs of some graph is not known in general. We determine several forbidden induced subgraphs of matching graphs and add even cycles to the list of known matching graphs. In another direction, we study the behavior of sequences of iterated matching graphs. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 73–86, 1998  相似文献   

12.
13.
The toughness indexτ(G) of a graph G is defined to be the largest integer t such that for any S ? V(G) with |S| > t, c(G - S) < |S| - t, where c(G - S) denotes the number of components of G - S. In particular, 1-tough graphs are exactly those graphs for which τ(G) ≥ 0. In this paper, it is shown that if G is a planar graph, then τ(G) ≥ 2 if and only if G is 4-connected. This result suggests that there may be a polynomial-time algorithm for determining whether a planar graph is 1-tough, even though the problem for general graphs is NP-hard. The result can be restated as follows: a planar graph is 4-connected if and only if it remains 1-tough whenever two vertices are removed. Hence it establishes a weakened version of a conjecture, due to M. D. Plummer, that removing 2 vertices from a 4-connected planar graph yields a Hamiltonian graph.  相似文献   

14.
The concept of the line graph can be generalized as follows. The k-line graph Lk(G) of a graph G is defined as a graph whose vertices are the complete subgraphs on k vertices in G. Two distinct such complete subgraphs are adjacent in Lk(G) if and only if they have in G k ? 1 vertices in common. The concept of the total graph can be generalized similarly. Then the Perfect Graph Conjecture will be proved for 3-line graphs and 3-total graphs. Moreover, perfect 3-line graphs are not contained in any of the known classes of perfect graphs. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
In 1960 Ore proved the following theorem: Let G be a graph of order n. If d(u) + d(v)≥n for every pair of nonadjacent vertices u and v, then G is hamiltonian. Since then for several other graph properties similar sufficient degree conditions have been obtained, so‐called “Ore‐type degree conditions”. In [R. J. Faudree, R. H. Schelp, A. Saito, and I. Schiermeyer, Discrete Math 307 (2007), 873–877], Faudree et al. strengthened Ore's theorem as follows: They determined the maximum number of pairs of nonadjacent vertices that can have degree sum less than n (i.e. violate Ore's condition) but still imply that the graph is hamiltonian. In this article we prove that for some other graph properties the corresponding Ore‐type degree conditions can be strengthened as well. These graph properties include traceable graphs, hamiltonian‐connected graphs, k‐leaf‐connected graphs, pancyclic graphs, and graphs having a 2‐factor with two components. Graph closures are computed to show these results. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 314–323, 2012  相似文献   

16.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by τ c (G), is the minimum cardinality of a clique-transversal set in G. In this paper we give the exact value of the clique-transversal number for the line graph of a complete graph. Also, we give a lower bound on the clique-transversal number for 4-regular claw-free graphs and characterize the extremal graphs achieving the lower bound.  相似文献   

17.
Noga Alon 《Combinatorica》1998,18(3):301-310
For an undirected graph , let denote the graph whose vertex set is in which two distinct vertices and are adjacent iff for all i between 1 and n either or . The Shannon capacity c(G) of G is the limit , where is the maximum size of an independent set of vertices in . We show that there are graphs G and H such that the Shannon capacity of their disjoint union is (much) bigger than the sum of their capacities. This disproves a conjecture of Shannon raised in 1956. Received: December 8, 1997  相似文献   

18.
A graph with at least two vertices is matching covered if it is connected and each edge lies in some perfect matching. A matching covered graph G is extremal if the number of perfect matchings of G is equal to the dimension of the lattice spanned by the set of incidence vectors of perfect matchings of G. We first establish several basic properties of extremal matching covered graphs. In particular, we show that every extremal brick may be obtained by splicing graphs whose underlying simple graphs are odd wheels. Then, using the main theorem proved in 2 and 3 , we find all the extremal cubic matching covered graphs. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 19–50, 2005  相似文献   

19.
A graph G = (V, E) is called weakly four‐connected if G is 4‐edge‐connected and G ? x is 2‐edge‐connected for all xV. We give sufficient conditions for the existence of ‘splittable’ vertices of degree four in weakly four‐connected graphs. By using these results we prove that every minimally weakly four‐connected graph on at least four vertices contains at least three ‘splittable’ vertices of degree four, which gives rise to an inductive construction of weakly four‐connected graphs. Our results can also be applied in the problem of finding 2‐connected orientations of graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 217–229, 2006  相似文献   

20.
A graph G is perfectly orderable in the sense of Chvátal if there exists a linear order on the set of vertices of G such that no induced path with vertices a, b, c, d and edges ab, bc, cd has a < b and d < c. A perfectly orderable graph G is brittle if every induced subgraph of G contains a vertex which is either endpoint or midpoint of no induced path with three edges in G. We present a new class of brittle graphs by forbidden configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号