首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method is proposed to improve the depth resolution of a conventional X‐ray confocal microscopy system by adding a thin wire close to the sample surface and upstream of the polycapillary in the exit channel. A depth resolution of around 10 μm is easily obtained. The detection efficiency is improved by a factor of two to three times, compared with the thin wire technique previously proposed. It is also shown that not only the elemental distribution but also the X‐ray absorption near‐edge structure (XANES) spectrum from locations below the sample surface can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Capillary optics are used for X‐ray fluorescence micro‐analysis using the Cu Kα line provided by a rotating anode. The excitation beam is focused using a polycapillary lens on a Co–Ti sample. Cylindrical glass capillaries of various diameters are fitted to the X‐ray detector (Energy Dispersive X‐Ray (EDX) analyzer) and displaced along the irradiated zone of the sample. The fluorescence is studied as a function of capillary position. Good agreement is found between experimental and calculated lateral widths of the fluorescence collection, taken into account the cylindrical capillary critical angles relevant in the experiment. The influence of the cylindrical capillary diameter on the signal level detected is studied to estimate the possibility of lateral resolution increase of X‐ray fluorescence technique both in‐lab and in synchrotron environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

4.
In this paper the first practical application of kinoform lenses for the X‐ray reflectivity characterization of thin layered materials is demonstrated. The focused X‐ray beam generated from a kinoform lens, a line of nominal size ~50 µm × 2 µm, provides a unique possibility to measure the X‐ray reflectivities of thin layered materials in sample scanning mode. Moreover, the small footprint of the X‐ray beam, generated on the sample surface at grazing incidence angles, enables one to measure the absolute X‐ray reflectivities. This approach has been tested by analyzing a few thin multilayer structures. The advantages achieved over the conventional X‐ray reflectivity technique are discussed and demonstrated by measurements.  相似文献   

5.
A high‐resolution X‐ray fluorescence spectrometer based on Rowland circle geometry was developed and installed at BL14W1 XAFS beamline of Shanghai Synchrotron Radiation Facility. The spectrometer mainly consists of three parts: a sample holder, a spherically curved Si crystal, and an avalanche photodiode detector. The simplicity of the spectrometer makes it easily assembled on the general purpose X‐ray absorption beamline. X‐ray emission spectroscopy and high‐resolution X‐ray absorption near edge spectroscopy can be carried out by using this spectrometer. X‐ray emission preliminary results with high‐resolution about 3 eV of Mn compounds were obtained, which confirmed the feasibility of the spectrometer. The application about Eu (III) retention on manganese dioxide was also studied using this spectrometer. Compared with conventional X‐ray absorption fine structure spectroscopy technique, the fluorescence peak of probed element [Eu (III) Lα] and matrix constituents (Mn Kα) were discriminated using this technique, indicating its superiority in fluorescence detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Total reflection X‐ray fluorescence analysis (TXRF) is a special method of energy‐dispersive X‐ray fluorescence analysis extending EDXRF to the ultra trace element level. The achievable detection limits depend on the excitation source and are in the range of picograms to femtograms. Only small amounts of sample are required and the quantification by adding one element as an internal standard is easy as thin film approximation is valid. In this article, the recent advances in TXRF are reviewed with over 80 references. The principles, advantages, instrumentation, improvements with X‐ray optics, synchrotron radiation as excitation sources as well as various fields of application, wafer surface analysis, depth profiling, absorption spectroscopy, medical samples, biological samples, environmental monitoring, archeological and polymer samples are described. Related techniques are also mentioned and discussed.  相似文献   

7.
The application of non‐destructive imaging to characterizing samples has become more important as the costs of samples increase. Imaging a sample via X‐ray techniques is preferable when altering or even touching the sample affects its properties, or when the sample is fielded after characterization. Two laboratory‐based X‐ray techniques used at Los Alamos include micro X‐ray computed tomography (MXCT) and confocal micro X‐ray fluorescence (confocal MXRF). Both methods create a 3D rendering of the sample non‐destructively. MXCT produces a high‐resolution (sub‐µm voxel) rendering of the sample based upon X‐ray absorption; the resulting model is a function of density and does not contain any elemental information. Confocal MXRF produces an elementally specific 3D rendering of the sample, but at a lower (30 × 30 × 65 µm) resolution. By combining data from these two techniques, scientists provided a more comprehensive method of analysis. We will describe a MATLAB routine written to render each of these data sets individually and/or within the same coordinate system. This approach is shown in the analysis of two samples: an integrated circuit surface mounted resistor and a machined piece of polystyrene foam. The samples chosen provide an opportunity to compare and contrast the two X‐ray techniques, identify their weaknesses and show how they are used in a complementary fashion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Two different confocal micro X‐ray fluorescence spectrometers have been developed and installed at Osaka City University and the Vienna University of Technology Atominstitut. The Osaka City University system is a high resolution spectrometer operating in air. The Vienna University of Technology Atominstitut spectrometer has a lower spatial resolution but is optimized for light element detection and operates under vacuum condition. The performance of both spectrometers was compared. In order to characterize the spatial resolution, a set of nine specially prepared single element thin film reference samples (500 nm in thickness, Al, Ti, Cr, Fe Ni, Cu, Zr, Mo, and Au) was used. Lower limits of detection were determined using the National Institute of Standards and Technology standard reference material glass standard 1412. A paint layer sample (cultural heritage application) and paint on automotive steel samples were analyzed with both instruments. The depth profile information was acquired by scanning the sample perpendicular to the surface. © 2013 The Authors. X‐Ray Spectrometry published by John Wiley & Sons, Ltd.  相似文献   

9.
Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
X‐ray microscopy is capable of imaging particles in the nanometer size range directly with sub‐micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X‐ray microscopy: the transmission X‐ray microscope and the scanning transmission X‐ray microscope; their set‐ups are explained in this paper. While the former takes high‐resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X‐ray microscope. Images are shown from a cryo‐tomography experiment based on X‐ray microscopy images to obtain information about the three‐dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X‐ray microscope to combine morphology and chemistry within a soil sample is shown. X‐ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X‐ray energies above 1 keV.  相似文献   

11.
In this paper, we discuss approaches to prepare solid samples for X‐ray fluorescence spectrometry (XRF). Although XRF can be used to analyze major and minor elements in various solid samples including powders and grains without dissolution techniques, to obtain reliable XRF results, the prepared sample must meet certain criteria related to homogeneity, particle size, flatness, and thickness. The conditions are defined by the analytical depth of fluorescent X‐rays from analytes, and the analytical depth can be estimated from the X‐ray absorption related to the energy of each X‐ray and the composition and density of the sample. For example, when the sample flatness and particle size are less than the analytical depth and the sample possesses homogeneity within a depth less than the analytical depth, the XRF results are representative of the entire sample. Furthermore, an appropriate sample thickness that is larger than the analytical depth or constant can prevent changes in fluorescent X‐ray intensity with variations in sample thickness. To obtain accurate and reproducible measurements, inhomogeneous solid samples must be pulverized, homogenized, and prepared as loose powder, powder pellets, or glass beads. This paper explains the approaches used to prepare solid samples for XRF analysis based on the analytical depths of fluorescent X‐rays. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A scanning transmission X‐ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X‐rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X‐ray microscopy (STXM) setup is from ~150 to ~1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction‐limited space resolution, ~30 nm, is achieved in the photon energy range up to ~850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X‐ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ~50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.  相似文献   

13.
The recent developments in X‐ray detectors have opened new possibilities in the area of time‐resolved pump/probe X‐ray experiments; this article presents the novel use of a PILATUS detector to achieve X‐ray pulse duration limited time‐resolution at the Advanced Photon Source (APS), USA. The capability of the gated PILATUS detector to selectively detect the signal from a given X‐ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of α‐perylene illustrates the possibility of reaching an X‐ray pulse duration limited time‐resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X‐ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline.  相似文献   

14.
Energy‐dispersive X‐ray fluorescence (EDXRF)‐analysis is a technique which in the case of metals analyzes thin surface layers. For example, when gold and silver alloys are analyzed, it typically interests a depth of microns up to a maximum of tens of microns. Therefore, it can give wrong results or be affected by a large indetermination when the sample composition is altered because of surface processes, as often happens when silver alloys are oxidated, and sometimes in the case of gold alloys rich on copper or silver. A complementary technique was therefore developed, of bulk analysis, which uses the same equipment employed for EDXRF‐analysis; the X‐ray beam from the X‐ray tube is monochromatized by means of a tin secondary target, which K lines bracket the silver‐K discontinuity. The sample to be analyzed is positioned between the secondary target and the detector. This technique is able to determine (by measuring the attenuation of tin‐K rays) thickness and/or composition of gold and silver alloys having a thickness of less than about 120 µm for gold and about 0.7 mm for silver. The method was tested with Au–Ag–Cu alloys of known composition and thickness and then applied to gold and silver artifacts from the tomb of the Lady of Cao, which belongs to the Moche pre‐hispanic culture from the North of Peru, and dates about 300 A.D. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We report on the surface‐sensitive grazing emission X‐ray fluorescence technique combined with synchrotron radiation excitation and high‐resolution detection to realize depth‐profile measurements of Al‐implanted Si wafers. The principles of grazing emission measurements as well as the benefits offered by synchrotron sources and wavelength‐dispersive detection setups are presented. It is shown that the depth distribution of implanted ions can be extracted from the dependence of the X‐ray fluorescence intensity on the grazing emission angle with nanometer‐scale precision provided that an analytical function describing the shape of the depth distribution is assumed beforehand. If no a priori assumption is made, except a bell shaped form for the dopant distribution, the profile derived from the measured angular distribution is found to reproduce quite satisfactorily the depth distribution of the implanted ions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The technical implementation of a multi‐MHz data acquisition scheme for laser–X‐ray pump–probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high‐repetition rates of X‐ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60‐bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X‐ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12‐bit resolution. These traces are then processed to deliver an integrated value for each recorded single X‐ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single‐shot values are averaged over ~107 pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X‐ray probe energy. The sensitivity reaches down to the shot‐noise limit, and signal‐to‐noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse?1 and is only technically limited by the utilized APD.  相似文献   

18.
The integration of microfluidic devices with micro X‐ray fluorescence (micro‐XRF) spectrometry offers a new approach for the direct characterization of liquid materials. A sample presentation method based on use of small volumes (<5 µl) of liquid contained in an XRF‐compatible device has been developed. In this feasibility study, a prototype chip was constructed, and its suitability for XRF analysis of liquids was evaluated, along with that of a commercially produced microfluidic device. Each of the chips had an analytical chamber which contained approximately 1 µl of sample when the device was filled using a pipette. The performance of the chips was assessed using micro‐XRF and high resolution monochromatic wavelength dispersive X‐ray fluorescence, a method that provides highly selective and sensitive detection of actinides. The intended application of the device developed in this study is for measurement of Pu in spent nuclear fuel. Aqueous solutions and a synthetic spent fuel matrix were used to evaluate the devices. Sr, which has its Kα line energy close to the Pu Lα line at 14.2 keV, was utilized as a surrogate for Pu because of reduced handling risks. Between and within chip repeatability were studied, along with linearity of response and accuracy. The limit of detection for Sr determination in the chip is estimated at 5 ng/µl (ppm). This work demonstrates the applicability of microfluidic sample preparation to liquid characterization by XRF, and provides a basis for further development of this approach for elemental analysis within a range of sample types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The first monochromatic X‐ray tomography experiments conducted at the Imaging and Medical beamline of the Australian Synchrotron are reported. The sample was a phantom comprising nylon line, Al wire and finer Cu wire twisted together. Data sets were collected at four different X‐ray energies. In order to quantitatively account for the experimental values obtained for the Hounsfield (or CT) number, it was necessary to consider various issues including the point‐spread function for the X‐ray imaging system and harmonic contamination of the X‐ray beam. The analysis and interpretation of the data includes detailed considerations of the resolution and efficiency of the CCD detector, calculations of the X‐ray spectrum prior to monochromatization, allowance for the response of the double‐crystal Si monochromator used (via X‐ray dynamical theory), as well as a thorough assessment of the role of X‐ray phase‐contrast effects. Computer simulations relating to the tomography experiments also provide valuable insights into these important issues. It was found that a significant discrepancy between theory and experiment for the Cu wire could be largely resolved in terms of the effect of the point‐spread function. The findings of this study are important in respect of any attempts to extract quantitative information from X‐ray tomography data, across a wide range of disciplines, including materials and life sciences.  相似文献   

20.
A detailed report about the confocal experiment and the corresponding data analysis is presented to determine local atomic concentrations in a thick sample with a micrometer resolution. X‐ray emission from a quartz substrate, loaded by aerosol particles, was induced by a scanning proton microbeam and observed by an Si(Li) spectrometer whose field of view was narrowed by a polycapillary lens. A series of X‐ray images were recorded at different positions of the sample along the microbeam axis when the particles were driven through the sensitive microvolume. The concentrations reconstructed in three dimensions were used to extract penetration profiles of the strongest X‐ray emitters (Fe, Ca, S) in an aerosol sample together with the surface profile of the matrix (Si). The results show exponentially dumped depth profiles with characteristic length depending on particle size. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号