首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60 + and Ar1700 + for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60 + was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60 + dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700 +, were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.
Figure
Depth profiling of an evaporated multilayer amino-acid film using fullerene and large argon clusters. The film consists in three tyrosine layers of 8 nm each incorporated between four phenylalanine layers of 93 nm each all evaporated on to a silicon substrate.  相似文献   

2.
Polymethylmethacrylate (PMMA) is widely used in various fields, including the semiconductor, biomaterial and microelectronic fields. Obtaining the correct depth profiles of PMMA is essential, especially when it is used as a thin-film. There have been many studies that have used earlier generation of cluster ion (SF5+) as the sputtering source to profile PMMA films, but few reports have discussed the use of the more recently developed C60+ in the PMMA sputtering process. In this study, X-ray photoelectron spectroscopy (XPS) and dynamic secondary ion mass spectroscopy (D-SIMS) were used concurrently to monitor the depth profiles of PMMA under C60+ bombardment. Additionally, the cosputtering technique (C60+ sputtering with auxiliary, low-kinetic-energy Ar+) was introduced to improve the analytical results. The proper cosputtering conditions could eliminate the signal enhancement near the interface that occurred with C60+ sputtering and enhance the sputtering yield of the characteristic signals. Atomic force microscopy (AFM) was also used to measure the ion-induced topography. Furthermore, the effect of the specimen temperature on the PMMA depth profile was also examined. At higher temperatures (+120 °C), the depolymerization reaction that corresponded to main-chain scission dominated the sputtering process. At lower temperatures (−120 °C), the cross-linking mechanism was retarded significantly due to the immobilization of free radicals. Both the higher and lower sample temperatures were found to further improve the resulting depth profiles.  相似文献   

3.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The relative sputtering yield of carbon with respect to tantalum was determined for 1 keV Ar+ ion bombardment in the angular range of 70°–82° (measured from surface normal) by means of Auger electron spectroscopy depth profiling of C/Ta and Ta/C bilayers. The ion bombardment‐induced interface broadening was strongly different for the C/Ta and Ta/C, whereas the C/Ta interface was found to be rather sharp, the Ta/C interface was unusually broad. Still the relative sputtering yields (YC/YTa) derived from the Auger electron spectroscopy depth profiles of the two specimens agreed well. The relative sputtering yields obtained were different from those determined earlier on thick layers, calculated by simulation of SRIM2006 and by the fitting equation of Eckstein. The difference increases with increase of angle of incidence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Sputter‐depth profiles of model organic thin films on silicon using C60 primary ions have been employed to measure sputtering yields and depth resolution parameters. We demonstrate that some materials (polylactide, Irganox 1010) have a constant and high sputtering yield, which varies linearly with the primary ion energy, whereas another material (Alq3) has lower, fluence‐dependent sputtering yields. Analysis of multi‐layered organic thin films reveals that the depth resolution is a function of both primary ion energy and depth, and the sputtering yield depends on the history of sputtering. We also show that ~30% of repeat units are damaged in the steady‐state regime during polylactide sputtering. Crown Copyright © 2006. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C60+ primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C60+ primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01–2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar+ was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C60+ bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C60+ beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C60+ sputtering. Furthermore, because C60+ is responsible for generating the molecular ions, the dosage of the auxiliary Ar+ does not significantly affect the quantification curves.  相似文献   

7.
An effect of measurement conditions on the depth resolution was investigated for dual‐beam time of flight‐secondary ion mass spectrometry depth profiling of delta‐doped‐boron multi‐layers in silicon with a low‐energy sputter ion (200 eV – 2 keV O2+) and with a high‐energy primary ion (30 keV Bi+). The depth resolution was evaluated by the intensity ratio of the first peak and the subsequent valley in B+ depth profile for each measurement condition. In the case of sputtering with the low energy of 250 eV, the depth resolution was found to be affected by the damage with the high‐energy primary ion (Bi+) and was found to be correlated to the ratio of current density of sputter ion to primary ion. From the depth profiles of implanted Bi+ primary ion remaining at the analysis area, it was proposed that the influence of high‐energy primary ion to the depth resolution can be explained with a damage accumulation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Reconstruction of original element distribution at semiconductor interfaces using experimental SIMS profiles encounters considerable difficulties because of the matrix effect, sputtering rate change at the interface, and also a sputtering‐induced broadening of original distributions. We performed a detailed depth profiling analysis of the Al step‐function distribution in GaAs/AlxGa1?xAs heterostructures by using Cs+ primary ion beam sputtering and CsM+ cluster ion monitoring (where M is the element of interest) to suppress the matrix effect. The experimental Depth Resolution Function (DRF) was obtained by differentiation of the Al step‐function profile and compared with the ‘reference’ DRF found from depth profiling of an Al delta layer. The difference between two experimental DRFs was explained by the sputtering rate change during the interface profiling. We experimentally studied the sputtering rate dependence on the AlxGa1?xAs layer composition and applied it for a reconstruction of the DRF found by differentiating the Al step‐function distribution: the ‘reconstructed’ and ‘reference’ DRFs were found to be in good agreement. This confirmed the correctness of the treatment elaborated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this contribution, we focus on the use of C60+ ions for depth profiling of model synthetic polymers: polystyrene (PS) and poly(methylmethacrylate) (PMMA). These polymers were spin coated on silicon wafers, and the obtained samples were depth‐profiled both with Ga+ ions and C60+ ions. We observed an important yield enhancement for both polymers when C60+ ions are used. More specifically, we discuss here the decrease in damage obtained with C60, which is found to be very sensitive to the nature of the polymer. During the C60+ sputtering of the PMMA layer, after an initial decrease, a steady state is observed in the secondary ion yield of characteristic fragments. In contrast, for PS, an exponential decrease is directly observed, leading to an initial disappearance cross section close to the value observed for Ga+. Though there is a significant loss of characteristic PS signal when sputtering with C60+ ions beams, there are still significant enhancements in sputter yields when employing C60+ as compared to Ga+. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The hydrogen (H)/sodium (Na) interface is of great interest in glass corrosion research. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the few techniques that can provide nanoscale H and Na imaging simultaneously. However, the optimized condition for ToF-SIMS imaging of H in glass is still unclear. In H depth profiling using ToF-SIMS, H background control is a key, in which an analysis ion beam and a sputtering ion beam work together in an interlaced mode to minimize it. Therefore, it is of great interest to determine if an auxiliary sputtering ion beam is also necessary to control H background in ToF-SIMS imaging of H. In this study, H imaging with and without auxiliary sputtering beams (Cs+, O2+, and Arn+) was compared on a corroded international simple glass (ISG). It was surprising that the H/Na interface could be directly imaged using positive ion imaging without any auxiliary sputtering ion beam under a vacuum of 2 to 3 × 10−8 mbar. The H+ background was about 5% atomic percent on the pristine ISG glass, which was significantly lower than the H concentration in the alteration layer (~15%). Moreover, positive ion imaging could show distributions of other interesting species simultaneously, providing more comprehensive information of the glass corrosion. If an auxiliary O2+ sputtering ion beam was used, the H+ background could be reduced but still higher than that in the depth profiling. Besides, this condition could cause significant loss of signal intensities due to strong surface charging.  相似文献   

12.
A study of phenylalanine films of different thicknesses from submonolayer to 55 nm on Si wafers has been made using Bin+ and C60+ cluster primary ions in static SIMS. This shows that the effect of film thickness on ion yield is very similar for all primary ions, with an enhanced molecular yield at approximately 1 monolayer attributed to substrate backscattering. The static SIMS ion yields of phenylalanine at different thicknesses are, in principle, the equivalent of a static SIMS depth profile, without the complication of ion beam damage and roughness resulting from sputtering to the relevant thickness. Analyzing thin films of phenylalanine of different thicknesses allows an interpretation of molecular bonding to, and orientation on, the silicon substrate that is confirmed by XPS. The large crater size for cluster ions has interesting effects on the secondary ion intensities of both the overlayer and the substrate for monolayer and submonolayer quantities. This study expands the capability of SIMS for identification of the chemical structure of molecules at surfaces. © Crown copyright 2010.  相似文献   

13.
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface.  相似文献   

14.
Depth profiling of nanostructures is of high importance both technologically and fundamentally. Therefore, many different methods have been developed for determination of the depth distribution of atoms, for example ion beam (e.g. O2+, Ar+) sputtering, low-damage C60 cluster ion sputtering for depth profiling of organic materials, water droplet cluster ion beam depth profiling, ion-probing techniques (Rutherford backscattering spectroscopy (RBS), secondary-ion mass spectroscopy (SIMS) and glow-discharge optical emission spectroscopy (GDOES)), X-ray microanalysis using the electron probe variation technique combined with Monte Carlo calculations, angle-resolved XPS (ARXPS), and X-ray photoelectron spectroscopy (XPS) peak-shape analysis. Each of the depth profiling techniques has its own advantages and disadvantages. However, in many cases, non-destructive techniques are preferred; these include ARXPS and XPS peak-shape analysis. The former together with parallel factor analysis is suitable for giving an overall understanding of chemistry and morphology with depth. It works very well for flat surfaces but it fails for rough or nanostructured surfaces because of the shadowing effect. In the latter method shadowing effects can be avoided because only a single spectrum is used in the analysis and this may be taken at near normal emission angle. It is a rather robust means of determining atom depth distributions on the nanoscale both for large-area XPS analysis and for imaging. We critically discuss some of the techniques mentioned above and show that both ARXPS imaging and, particularly, XPS peak-shape analysis for 3D imaging of nanostructures are very promising techniques and open a gateway for visualizing nanostructures.  相似文献   

15.
Secondary ion mass spectrometry studies have been made of the removal of the degraded layer formed on polymeric materials when cleaning focused ion beam (FIB)-sectioned samples comprising both organic and inorganic materials with a 30-keV Ga+ FIB. The degraded layer requires a higher-than-expected Ar gas cluster ion beam (GCIB) dose for its removal, and it is shown that this arises from a significant reduction in the layer sputtering yield compared with that for the undamaged polymer. Stopping and Range of Ions in Matter calculations for many FIB angles of incidence on flat polymer surfaces show the depth of the damage and of the implantation of the Ga+ ions, and these are compared with the measured depth profiles for Ga+-implanted flat polymer surfaces at several angles of incidence using an Ar+ GCIB. The Stopping and Range of Ions in Matter depth and the measured dose give the sputtering yield volume for this damaged and Ga+-implanted layer. These, and literature yield values for Ga+ damaged layers, are combined on a plot showing how the changing sputtering yield is related to the implanted Ga density for several polymer materials. This plot contains data from both the model flat poly(styrene) surfaces and FIB-milled sections showing that these 2 surfaces have the same yield reduction. The results show that the damaged and Ga+-implanted layer's sputtering rate, after FIB sectioning, is 50 to 100 times lower than for undamaged polymers and that it is this reduction in sputtering rate, rather than any development of microtopography, that causes the high Ar+ GCIB dose required for cleaning these organic surfaces.  相似文献   

16.
Auger electron spectroscopy (AES) sputter depth profiling of an ISO reference material of the GaAs/AlAs superlattice was investigated using low‐energy Ar+ ions. Although a high depth resolution of ~1.0 nm was obtained at the GaAs/AlAs interface under 100 eV Ar+ ion irradiation, deterioration of the depth resolution was observed at the AlAs/GaAs interface. The Auger peak profile revealed that the enrichment of Al due to preferential sputtering occurred during sputter etching of the AlAs layer only under 100 eV Ar+ ion irradiation. In addition, a significant difference in the etching rates between the AlAs and GaAs layers was observed for low‐energy ion irradiation. Deterioration of the depth resolution under 100 eV Ar+ ion irradiation is attributed to the preferential sputtering and the difference in the etching rate. The present results suggest that the effects induced by the preferential sputtering and the significant difference in the etching rate should be taken into account to optimize ion etching conditions using the GaAs/AlAs reference material under low‐energy ion irradiation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
To examine precise depth profiles at the interface of SiO2/SiC, a high resolution that can detect slight discrepancies in the distribution is needed. In this study, an experimental method to achieve a high resolution of less than 1 nm was developed by using dual-beam time-of-flight secondary ion mass spectrometry (TOF-SIMS). The analysis was preceded by the following three steps: (1) determination of the optimal analytical conditions of the analysis beam (Bi+) and sputtering beam (Cs+), (2) verification of the etching methods to thin the SiO2 layer, and (3) confirmation of the benefits of the low-energy sputtering beam directed toward SiO2/SiC samples. By using the secondary ion intensity peak-to-valley ratio of BN and BO of a sample with delta-doped boron multilayers, the appropriate Bi+/Cs+ condition for a high depth resolution was determined for each energy level of the sputtering beam. Upon verification of the etching methods to thin the SiO2 layer, slight discrepancies were found between samples that were obtained with different etching methods. The difference in the roughness values of the etched surfaces was proactively utilized for the performance confirmation of the low-energy sputtering beam by means of precise observation of the profiles at the SiO2/SiC interface. The use of a Cs beam with a low energy between 0.25 and 0.5 keV enabled the detection of slight discrepancies in the roughness of less than 1 nm between samples. The aforementioned method has the potential to accurately detect discrepancies in the intrinsic distribution at the SiO2/SiC interface among samples.  相似文献   

18.
A Monte Carlo (MC) simulation program written in C++ has been newly developed to describe the dynamic processes of depth profiling with low energy ions. This MC simulation was applied to the depth profiling of GaAs/AlAs reference material for Ne+, Ar+, and Xe+ ions to elucidate the depth resolution attained by surface analytical techniques. The result clearly predicts that there is a considerable difference between the depth resolutions estimated from the leading and trailing edges of Ne+ and Xe+ ions, whereas the difference is quite small for Ar+ ions. Systematic investigation of the dependence of theoretical depth resolution on primary ion energy has revealed that the preferential sputtering primarily caused by the difference in energy transfer to target atoms through elastic collisions between incident ions and target atoms results in the difference between the leading and trailing edges. The inclusion of other factors, e.g. preferential sputtering effect caused by the metallization of Al atoms on the topmost surface, etc. for further improvement of the MC simulation modeling before accommodating quantitative arguments on the depth resolution is strongly recommended. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Sputter depth profiling of organic films while maintaining the molecular integrity of the sample has long been deemed impossible because of the accumulation of ion bombardment-induced chemical damage. Only recently, it was found that this problem can be greatly reduced if cluster ion beams are used for sputter erosion. For organic samples, carbon cluster ions appear to be particularly well suited for such a task. Analysis of available data reveals that a projectile appears to be more effective as the number of carbon atoms in the cluster is increased, leaving fullerene ions as the most promising candidates to date. Using a commercially available, highly focused C60q+ cluster ion beam, we demonstrate the versatility of the technique for depth profiling various organic films deposited on a silicon substrate and elucidate the dependence of the results on properties such as projectile ion impact energy and angle, and sample temperature. Moreover, examples are shown where the technique is applied to organic multilayer structures in order to investigate the depth resolution across film-film interfaces. These model experiments allow collection of valuable information on how cluster impact molecular depth profiling works and how to understand and optimize the depth resolution achieved using this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号