首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zerovalent ytterbium (Yb) powder is firstly used as a catalyst in single electron transfer‐living radical polymerization of methyl methacrylate initiated by carbon tetrachloride in N, N‐dimethylformamide (DMF) and dimethyl sulfoxide, respectively. Polymerization proceeds in a “living”/controlled way as evidenced by kinetic studies and chain extension results, producing well‐defined polymers with controlled degree of polymerization and narrow molecular weight distribution. The apparent activation energy of polymerization in DMF is accounted to be 36.2 kJ/mol, and the energy of equilibrium state is calculated to be 13.9 kJ/mol. An increase in the concentration of Yb(0) yields a higher monomer conversion. It is observed that polymerization rate experiments a rapid increase in the presence of more polar solvent water, and increasing in the content of H2O results in an increase in the apparent rate constant of polymerization, and a decrease in the molecular weight distribution. The reaction rate and molecular weight increase along with the decrease of DMF content. The effect of Yb(0) powder content, different ligands and concentration of initiator on the polymerization is also investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Single electron transfer‐living radical polymerization (SET‐LRP) has been used as a new technique for the synthesis of polyacrylonitrile (PAN) catalyzed by Cu(0) powder with carbon tetrachloride (CCl4) as the initiator and hexamethylenetetramine (HMTA) as the ligand in N,N‐dimethylformamide (DMF) or mixed solvent. Well‐controlled polymerization has been achieved as evidenced by a linear increase of molecular weight with respect to monomer conversion as well as narrow molecular weight distribution. Kinetics data of the polymerizations at both ambient temperature and elevated temperature demonstrate living/controlled feature. An increase in the concentration of ligand yields a higher monomer conversion within the same time frame and almost no polymerization occurs in the absence of ligand due to the poor disproportionation reaction of Cu(I). The reaction rate exhibits an increase with the increase of the amount of catalyst Cu(0)/HMTA. Better control on the molecular weight distribution has been produced with the addition of CuCl2. In the presence of more polar solvent water, it is observed that there is a rapid increase in the polymerization rate. The effect of initiator on the polymerization is also preliminarily investigated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
The single‐electron transfer living radical polymerization (SET‐LRP) method in the presence of chain transfer agent was used to synthesize poly(N‐isopropylacrylamide) [poly(NIPAM)] with a low molecular weight and a low polydispersity index. This was achieved using Cu(I)/2,2′‐bipyridine as the catalyst, 2‐bromopropionyl bromide as the initiator, 2‐mercaptoethanol as the chain transfer agent (TH), and N,N‐dimethylformamide (DMF) as the solvent at 90 °C. The copper nanoparticles with diameters of 16 ± 3 nm were obtained in situ by the disproportionation of Cu(I) to Cu(0) and Cu(II) species in DMF at 22 °C for 24 h. The molecular weights of poly(NIPAM) produced were significantly higher than the theoretical values, and the polydispersities were less than 1.18. The chain transfer constant (Ctr) was found to be 0.051. Although the kinetic analysis of SET‐LRP in the presence of TH corroborated the characteristics of controlled/living polymerization with pseudo‐first‐order kinetic behavior, the polymerization also exhibited a retardation period (k > ktr). The influence of molecular weight on lower critical solution temperature (LCST) was investigated by refractometry. Our experimental results explicitly elucidate that the LCST values increase slightly with decreasing molecular weight. Reversibility of solubility and collapse in response to temperature well correlated with increased molecular weight of poly(NIPAM). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
In this study, we reported the synthesis of polyacrylonitrile (PAN) via living radical polymerization in N, N‐dimethylformamide using carbon tetrachloride as initiator, copper(II) chloride (CuCl2)/hexamethylenetetramine as catalyst system, and 2,2‐azobisisobutyronitrile as a high concentration of thermal radical initiator. The polymerization proceeded in controlled/living manner as indicated by first‐order kinetics of the polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion and narrow polydispersity. Higher polymerization rate and narrower molecular weight distributions were observed with CuCl2 less than 50 ppm. The rate of polymerization showed a trend of increase along with temperature. The modified PAN containing amidoxime group was used for extraction of Ag(I) ions from aqueous solutions. The adsorption kinetics data indicated that the adsorption process followed pseudo‐second‐order rate model. The isotherm adsorption process could be described by the Freundlich isotherm model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Living radical polymerization of 2‐methoxyethyl acrylate (MEA) was achieved by single‐electron‐transfer/degenerative transfer mediated living radical polymerization (SET‐DTLRP) in water catalyzed by sodium dithionate. The poly(2‐methoxyethyl acrylate) is an amphiphilic polymer with a hydrophobic part (polyethylene chain) and a mildly hydrophilic tail. The plots of number‐average molecular weight versus conversion and ln{[M]0/[M]} versus time are linear, indicating a controlled polymerization. This method leads to the preparation of α,ω‐di(iodo) poly(2‐methoxyethyl acrylate)s (α,ω‐di(iodo)PMEA) macroinitiators that can be further functionalized. The molecular weight distributions were determined using a combination of three detectors (TriSEC): right‐angle light scattering (RALLS), a differential viscometer (DV) and refractive index (RI). The method studied in this work represents a possible route to prepare well‐tailored macromolecules made of 2‐methoxyethyl acrylate (biocompatible material) in an environmentally friendly reaction medium. To the best of our knowledge there is no previous report dealing with the synthesis of PMEA by any LRP approach in aqueous medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4454–4463, 2009  相似文献   

6.
Crosslinking copolymerization of butyl methacrylate with a small amount of divinylbenzene (DVB) was carried out using single‐electron transfer‐living radical polymerization initiated with carbon tetrachloride (CCl4) and catalyzed by Cu(0)/N‐ligand in N,N‐dimethylformamide to produce a highly oil‐absorbing gel. The polymerization, gelation process, and oil‐absorbing properties were studied in detail. Analysis of monomer conversion with reaction time showed that the polymerization followed first‐order kinetics for both linear and crosslinking polymerization before gelation. Higher levels of DVB led to earlier gelation and the influence of N‐ligand on gelation was also significant. Under optimal conditions, oil absorption of the prepared gel to chloroform could reach 42.1 g·g?1. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3233–3239  相似文献   

7.
Chloro (Cl)‐ and bromo (Br)‐functionalized macroinitiators were successfully prepared from the softwood hemicellulose O‐acetylated galactoglucomannan (AcGGM) and then explored and evaluated with respect to their ability and efficiency of initiating single electron transfer‐living radical polymerization (SET‐LRP). Both halogenated species effectively initiate SET‐LRP of an acrylate and a methacrylate monomer, respectively, yielding brushlike AcGGM graft copolymers, where the molecular weights are accurately controlled via the monomer:macroinitiator ratio and polymerization time over a broad range: from oligomeric to ultrahigh. The nature of the halogen does not influence the kinetics of polymerization strongly, however, for acrylate graft polymerization, AcGGM‐Cl gives a somewhat higher rate constant of propagation, while methacrylate grafting proceeds slightly faster when the initiating species is AcGGM‐Br. For both monomers, the macroinitiator efficiency is superior in the case of AcGGM‐Br. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
High performance polyacrylonitrile (PAN) was prepared with Mg powder as both reducing agent (RA) and supplemental activator (SA) by single electron transfer‐living radical polymerization (RASA SET‐LRP). First‐order kinetics of polymerization with respect to monomer concentration, linear increase of molecular weight, and narrow polydispersity with monomer conversion, and the obtained high isotacticity PAN indicate that RASA SET‐LRP in the presence of Mg powder could simultaneously control molecular weight and tacticity of PAN. compared with that obtained with ascorbic acid (VC) as RA, an obvious increase in isotacticity of PAN was observed. the block copolymer pan‐b‐pAN with molecular weight at 112,460, polydispersity at 1.33, and isotacticity at 0.314 was successfully prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3328–3332  相似文献   

9.
Single electron transfer living radical polymerization of methyl methacrylate catalyzed by the in situ prepared Cu(0) at ambient temperature was first examined using various metallic powders, including Zn(0), Ni(0), Mg(0), and Fe(0). Importantly, the polymerization initiated with Ni(0)/EBiB/CuBr2/PMDETA system exhibited optimal living/controlled nature and generated polymers with polydispersity index as low as 1.04 for 75.27% conversion and controlled molecular weights close to theoretical ones. A wide of range of Cu(II) salts were also investigated as catalyst sources instead of CuBr2. The recycling of Ni(0) was very convenient due to its magnetic property, which enables its extensive application. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The new SET‐LRP (using Cu(0) powder for organic synthesis) was successfully used to produce well‐defined linear and star homo‐ and diblock‐copolymers of PMA, PSA, and P(MA‐b‐GA)n (where n = 1 or 4). The kinetic data showed that all SET‐LRP were first order and reached high conversions in a short period of time. The other advantage of using such a system is that the copper can easily be removed through filtration, allowing the production of highly pure polymer. The molecular weight distributions were well controlled with polydispersity indexes below 1.1 and the number‐average molecular weight close to theory, especially upon the addition of Cu(II)Br2/Me6‐TREN complex. The linear and star block copolymers were then hydrolyzed to produce the biocompatible amphiphilic P(MA‐b‐GA)n, where the glycerol side‐groups make the outer block hydrophilic. These blocks were micellized into water and found to have a Rg/RH equal to 0.8 and 1.59 for the liner and star blocks, respectively. This together with the TEM's supported that the linear blocks formed the classical core‐shell micelles, where as, the star blocks formed vesicles. We found direct support for the vesicle structure from a TEM where one vesicle squashed a second vesicle consistent with a hollow structure. Such vesicle structures have potential applications as delivery nanoscaled devices for drugs and other important biomolecules. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6346–6357, 2008  相似文献   

13.
Here we reported the acid dissolution of copper oxides as a methodology for the activation of Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP). In this method, the oxide layer on the surface of commercial Cu(0) wire was removed by dissolution in a concentrated acid such as nitric acid, glacial acetic acid and hydrochloric acid. SET‐LRP of methyl acrylate catalyzed with Cu(0) wire activated with acids showed comparable k value to that of the nonactivated Cu(0) wire‐catalyzed counterpart. However, the polymerizations catalyzed with activated Cu(0) wire proceeded with no initial induction period, predictable molecular weight evolution with conversion, and narrow molecular weight distribution. Regardless of the activation method, the chain end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared from SET‐LRP initiated with a bifunctional initiator is extremely high, maintaining a 100% chain end functionality at ~90% monomer conversion. The degree of bimolecular termination increased as the polymerization exceeds 92% conversion. However, for binfunctional initiators this small amount of bimolecular termination at high conversion maintains a perfectly bifunctional polymer. Structural analysis by MALDI‐TOF upon thioetherification of α,ω‐di(bromo) PMA with thiophenol and 4‐fluorothiophenol confirmed the high fidelity of bromide chain ends. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
For the first time, ligand‐free Cu(0)‐mediated polymerization of methyl methacrylate (MMA) was realized by the selection of ethyl‐2‐bromo‐2‐phenylacetate as initiator at ambient temperature. The polymerization can reach up to 90% conversion within 5 h with dimethyl sulfoxide (DMSO) as solvent, while keeping manners of the controlled radical polymerization. Extensive investigation of this system revealed that for a well‐controlled Cu(0)‐mediated polymerization of MMA, the initiator should be selected with the structure as alkyl 2‐bromo‐2‐phenylacetate, and the solvent should be DMSO or N,N‐dimethylformamide. The selectivity for solvents indicated a typical single‐electron transfer‐living radical polymerization process. Scanning for other monomers indicated that under equal conditions, the polymerizations of other alkyl (meth)acrylates were uncontrollable. Based on these results, plausible reasons were discussed. The ligand‐free Cu(0)‐mediated polymerization showed its superiority with economical components and needless removal of Cu species from the resultant products. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
16.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Graphene nanosheets offer intriguing electronic, thermal, and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. Dispersal of graphene nanosheets in polymer hosts and precise interface control are challenging due to their strong interlayer cohesive energy and surface inertia. Here, an efficient strategy is presented for growing polymers directly from the surface of reduced graphene oxide (GO). This method involves the covalent attachment of Br‐containing initiating groups onto the surface of hydrazine hydrate reduced GO via a diazonium addition and the succeeding linking of poly(tert‐butyl methacrylate) (PtBMA) chains (71.7 wt % grafting efficiency) via surface‐initiated single‐electron‐transfer living radical polymerization (SET‐LRP) to graphene nanosheets. The resulting materials were characterized by using a range of testing techniques and it was proved that polymer chains were successfully introduced to the surface of exfoliated graphene sheets. After grafting with PtBMA, the modified graphene sheets still maintained the separated single layers, and the dispersibility was improved significantly. The method is believed to offer possibilities for optimizing the processing properties and interface structure of graphene–polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
The Cu(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) using ethyl 2‐bromoisobutyrate (EBiB) as an initiator with Cu(0)/N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine as a catalyst system in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was studied. The polymerization showed some living features: the measured number‐average molecular weight (Mn,GPC) increased with monomer conversion and produced polymers with relatively low polydispersities. The increase of HFIP concentration improved the controllability over the polymerization with increased initiation efficiency and lowered polydispersity values. 1H NMR, MALDI‐TOF‐MS spectra, and chain extension reaction confirmed that the resultant polymer was end‐capped by EBiB species, and the polymer can be reactivated for chain extension. In contrast, in the cases of dimethyl sulfoxide or N,N‐dimethylformamide as reaction solvent, the polymerizations were uncontrolled. The different effects of the solvents on the polymerization indicated that the mechanism of SET‐LRP differed from that of atom transfer radical polymerization. Moreover, HFIP also facilitated the polymerization with control over stereoregularity of the polymers. Higher concentration of HFIP and lower reaction temperature produced higher syndiotactic ratio. The syndiotactic ratio can be reached to about 0.77 at 1/1.5 (v/v) of MMA/HFIP at ?18 °C. In conclusion, using HFIP as SET‐LRP solvent, the dual control over the molecular weight and tacticity of PMMA was realized. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6316–6327, 2009  相似文献   

19.
The efficient Cu(0) wire‐catalyzed single‐electron transfer‐living radical polymerization (SET‐LRP) of oligo(ethylene oxide) methyl ether methacrylate (OEOMA) in DMSO and binary mixtures of DMSO with H2O is reported. Addition of 10–80% H2O to DMSO resulted in an increase in the apparent rate constant of propagation ( ), corresponding to an increase in the polarity and extent of disproportionation. At higher H2O content, decreases, and in H2O is slightly lower than that in DMSO. This unexpected behavior was attributed to the physical inaccessibility of Cu(0) wire catalyst to the hydrophobic reactive centers of OEOMA and initiator which self‐assemble in H2O into micellar aggregates and vesicles. This hypothesis was confirmed by the faster polymerization in H2O than in DMSO during catalysis with Cu(0) nanoparticles generated by disproportionation of CuBr. SET‐LRP of OEOMA can be performed in protic and dipolar aprotic solvents in air by the addition of hydrazine hydrate. The polymerization exhibited no induction period and identical as in the degassed experiment, and led to polymers with narrow molecular weigh distribution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3110–3122  相似文献   

20.
The aim of this work is to the study the influence of the isomer structures of butyl acrylate monomer on the single‐electron transfer/degenerative chain transfer mediated living radical polymerization (SET‐DTLRP). The kinetic of isobutyl acrylate is determined for the first time by SET‐DTLRP in water catalyzed by sodium dithionite. The plots of number‐average molecular weight versus conversion and ln([M]0/[M]) versus time are linear, demonstrating a controlled polymerization. The influence of the isomer t‐butyl, i‐butyl, and n‐butyl on the kinetics, properties, and stereochemistry of the reactions was assessed. To the best of our knowledge, there is no previous report dealing with the synthesis of PiBA by any LRP approach in aqueous medium. The results presented in this work suggest that the stability provided by the acrylate side group has an important influence in the polymerization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6542–6551, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号