首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
The metal‐organic framework {[Zn2(CAM)(μ2‐OH)(bpp)] · 2H2O}n ( 1 ) [H3CAM = 4‐hydroxypyridine‐2,6‐dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane], was hydrothermally synthesized and characterized by elemental analyses, infrared spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 presents a three dimensional self‐penetrating 8‐connected framework with the Schläfli symbol 420.53.65. In addition, the fluorescent properties and thermal stability of 1 were discussed as well.  相似文献   

2.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

3.
Reactions of the title free‐base porphyrin compound (TPyP) with dysprosium trinitrate hexahydrate in different crystallization environments yielded two solid products, viz. [μ‐5,15‐bis(pyridin‐1‐ium‐4‐yl)‐10,20‐di‐4‐pyridylporphyrin]bis[aquatetranitratodysprosium(III)] benzene solvate, [Dy2(NO3)8(C40H28N8)(H2O)2]·C6H6, (I), and 5,10,15,20‐tetrakis(pyridin‐1‐ium‐4‐yl)porphyrin pentaaquadinitratodysprosate(III) pentanitrate diethanol solvate dihydrate, (C40H30N8)[Dy(NO3)2(H2O)5](NO3)5·2C2H6O·2H2O, (II). Compound (I) represents a 2:1 metal–porphyrin coordinated complex, which lies across a centre of inversion. Two trans‐related pyridyl groups are involved in Dy coordination. The two other pyridyl substituents are protonated and involved in intermolecular hydrogen bonding along with the metal‐coordinated water and nitrate ligands. Compound (II) represents an extended hydrogen‐bonded assembly between the tetrakis(pyridin‐1‐ium‐4‐yl)porphyrin tetracation, the [Dy(NO3)2(H2O)5]+ cation and the free nitrate ions, as well as the ethanol and water solvent molecules. This report provides the first structural characterization of the exocyclic dysprosium complex with tetrapyridylporphyrin. It also demonstrates that charge balance can be readily achieved by protonation of the peripheral pyridyl functions, which then enhances their capacity in hydrogen bonding as H‐atom donors rather than H‐atom acceptors.  相似文献   

4.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

5.
A new manganese(II) complex [Mn3(bidc)2(C2O4)(H2O)10]n ( 1 ) (bidc = benzimidazole‐5,6‐dicarboxylate) was synthesized and characterized by X‐ray crystallography. X‐ray diffraction shows that complex 1 has a neutral, one‐dimensional (1D) brick wall chain structure. With the intramolecular and intermolecular hydrogen bonding interactions, the adjacent chains are joined into a 3D suparmolecular architecture. IR spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic coupling between the MnII ions in complex 1 .  相似文献   

6.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

7.
Self‐assembly reaction between hydrated rare‐earth (RE) nitrates RE(NO3)3 · 6H2O with K3Fe(CN)6 in H2O/DMF solution by employing the tridentate ligand 2, 2′:6′,2′′‐terpyridine (terpy) as a capping ligand has yielded three cyanide‐bridged compounds [RE(terpy)(DMF)(H2O)2][Fe(CN)6] · 6H2O [RE = Y ( 1 ), Tb ( 2 ), Dy ( 3 )]. FT‐IR spectra confirmed the presence of terpy ligands and cyanide groups in compounds 1 – 3 . Single‐crystal X‐ray structural analysis indicated that these compounds are isomorphous and adopt neutral [RE2Fe2] molecular squares, which are further linked through hydrogen bonding interactions to generate a three‐dimensional supramolecular network. Magnetic susceptibility measurements revealed that significant single ion magnetic anisotropy dominates the properties of these compounds.  相似文献   

8.
Three new compounds based on H2BDC and PyBImE [H2BDC = 1,4‐benzenedicarboxylatic acid, PyBImE = 2‐(2‐pyridin‐4‐yl‐vinyl)benzimidazole], namely, [Co(PyBImE)(BDC)(H2O)2] ( 1 ), [Co(PyBImE)2(HBDC)(BDC)0.5] ( 2 ), and [(HPyBImE)+ · (BDC)20.5 · (H2BDC)0.5] ( 3 ), were synthesized by hydrothermal methods and characterized by single‐crystal X‐ray diffraction. Compound 1 is a one‐dimensional chain bridged by terephthalate in a bis(monodentate) fashion. In the complex the nitrogen atom from NBIm and the coordination water molecule complete the coordination sphere. In complex 2 , the dinuclear cobalt units are bridged by terephthalate in a bis(bidentate) fashion into a one‐dimensional chain, but different from complex 1 , the nitrogen atom from NPy and the oxygen atom from hydrogenterephthalate complete the coordination sphere. Complex 3 is a co‐crystal with PyBImE and H2BDC in a 1:1 ratio and the transfer of hydrogen atoms leads the complex into a salt. Interesting supramolecular structures are shown due to the hydrogen bonding as well as π ··· π interactions in the three complexes. Thermal and magnetic properties of 1 and 2 were also studied.  相似文献   

9.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

10.
The reactions of transition metal salts or hydroxide with 1,4‐phenylenediacetic acid (H2PDA) in the presence of ancillary ligands 4,4′‐bipyridine (4,4′‐bpy) or imidazole (Im) produced five coordination polymers with the empirical formula [M(PDA)(4,4′‐bpy)(H2O)2]n [M = Mn ( 1 ), Ni ( 2 )], [Cu(PDA)(4,4′‐bpy)]n · 2nH2O ( 3 ), [Ni(PDA)(Im)2(H2O)2]n · nH2O ( 4 ), and [Cu(PDA)(Im)2]n · 2nH2O ( 5 ). Their structures were determined by single‐crystal X‐ray diffraction analyses. The isomorphous 1 and 2 present a two‐dimensional sheet constructed by two kinds of one‐dimensional chains of –NiII–PDA2––NiII– and –NiII–4,4′‐bpy–NiII–. Compound 3 features dinuclear subunits, which are further connected by two PDA2– ligands and two 4,4′‐bpy ligands along (001) and (011) directions, respectively, to build a two‐dimensional sheet with the topology (42.67.8)(42.6) different from those of 1 and 2 . Both 4 and 5 show one‐dimensional chain structure. The difference of compound 4 and 5 is that the two carboxylato groups of PDA2– in 4 adopt monodentate coordination modes, whereas the two carboxylato groups of PDA2– in 5 chelate to the metal ions. Magnetic susceptibility data of 1 were measured. Magnetically, 1 presents a one‐dimensional chain with a weak antiferromagnetic interaction (J =–0.064 cm–1) between the intrachain MnII atoms mediated by 4,4′‐bpy.  相似文献   

11.
The imidazole‐based dicarboxylate ligand 2‐(4‐(pyridin‐4‐yl)phenyl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyPhIDC), was synthesized and its coordination chemistry was studied. Solvothermal reactions of CaII, MnII, CoII, and NiII ions with H3PyPhIDC produced four coordination polymers, [Ca(μ3‐HPyPhIDC)(H2O)2]n ( 1 ), {[M32‐H2PyPhIDC)23‐HPyPhIDC)26(H2O)2] · 6H2O}n [M = Mn ( 2 ), Co ( 3 )], and {[Ni(μ3‐HPyPhIDC)(H2O)] · H2O}n ( 4 ). Compounds 1 – 4 were analyzed by IR spectroscopy, elemental analyses, and single‐crystal and powder X‐ray diffraction. Compound 1 displays a one‐dimensional (1D) infinite chain. Compounds 2 and 3 are of similar structure, showing 2D network structures with a (4,4) topology based on trinuclear clusters. Compound 4 has another type of 2D network structure with a 3‐connected (4.82) topology. The results revealed that the structural diversity is attributed to the coordination numbers and geometries of metal ions as well as the coordination modes and conformations of H3PyPhIDC. Moreover, the thermogravimetric analyses of all the compounds as well as luminescence properties of the H3PyPhIDC ligand and compound 1 were also studied.  相似文献   

12.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

13.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

14.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

15.
Three new metal–nitroxide complexes {[Ni(NIT4Py)2(obb)(H2O)2] · 1.5H2O}n ( 1 ), {[Co(NIT4Py)2(obb)(H2O)2] · 2H2O}n ( 2 ), and [Co(IM4Py)2(obb)2(H2O)2][Co(IM4Py)2(H2O)4] · 10H2O ( 3 ) with the V‐shaped 4,4′‐oxybis(benzoate) [NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxide, and obb = 4, 4′‐oxybis(benzoate) anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that complexes 1 and 2 crystallize in neutral one‐dimensional (1D) zigzag chains, in which the nitroxide–metal–nitroxide units are linked by the V‐shaped 4,4′‐oxybis(benzoate) anions, whereas complex 3 consists of isolated mononuclear [Co(IM4Py)2(obb)2(H2O)2]2– anions and [Co(IM4Py)2(H2O)4]2+ ions. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

16.
A metal‐organic polymer [Ni3(μ3‐O)(PDB)3]·H2O ( 1 ) (PDB = pyridine‐3,5‐dicarboxylate), with antiferromagnetic interactions between the adjacent Ni atoms, containing trinuclear μ3‐oxo‐bridged metal units Ni3(μ3‐O) have been synthesized by hydrothermal reaction of the achiral building blocks pyridine‐3,5‐dicarboxylate (3,5‐PDB) and Ni(NO3)2·4H2O. Compound 1 shows a high symmetry three‐dimensional snowflake‐shaped (3, 9)‐connected topology structures in which μ3‐oxo mixed‐valence Ni3O(CO2)6 clusters act as nine‐connected nodes and PDB ligands act as three‐connected nodes.  相似文献   

17.
This article systematically investigates the influence of the properties of inhomogeneous N‐auxiliary ligands and pH value on the helical structures of complexes based on C2‐symmetric ligand 1,3‐adamantanedicarboxylic acid (H2ADC). Five kinds of neutral ligands (phen=1,10‐phenanthroline, bipy=4,4′‐bipyridine, bpa=1,2‐bis(4‐pyridyl)ethane, bpe=1,2‐bis(4‐pyridyl)ethane, and bpp=1,3‐bis(4‐pyridyl)propane) were selected, and a series of new ZnII/CoII dicarboxylates have been synthesized by slow diffusion, namely, [Zn(phen)(ADC)(H2O)]2 ? CH3OH ( 1 ), {[Zn(ADC)(bpe)] ? H2O}n ( 2 ), {[Zn(ADC)(bipy)] ? 2 H2O}n ( 3 ), {[Zn(ADC)(bpa)]2 ? 5 H2O}n ( 4 ), {[Zn(ADC)(bpp)]2 ? CH3OH}n ( 5 ), {[Zn(ADC)(bpp)]}n ( 6 ), {[Co(ADC)(bpp)(CH3OH)(H2O)] ? CH3OH ? 2 H2O}n ( 7 ), and {[Co(ADC)(bpp)]}n ( 8 ). Single‐crystal X‐ray structural analysis shows that complex 1 forms a 0D dinuclear with closed‐loop unit. The complex 2 is a 2D layer framework. Compounds 3 and 4 are isomorphous with a small discrepancy and present one‐dimensional chainlike structures. It is interesting that the 2D organic–inorganic hybrid frameworks containing meso‐helical chains have been observed. Compound 5 is a 2D interpenetrated network with (4,4) topology, in which homochiral left‐handed helical chains are arranged in an ABAB sequence parallel to the plane defined by (a,c), and right‐handed helical chains running along the a axis are also observed in the solid state, resulting in a meso‐helical structure. Compounds 6 , 7 , and 8 crystallize in a chiral space group P212121. Highly dimensional 6 and 8 are essentially isostructural and present a threefold interpenetrated 3D diamondoid network containing three helical chains, whereas 7 exhibits a 2D grid layer with a left‐handed helical chain. Furthermore, thermal stability, X‐ray powder diffraction, and the luminescent properties of 1 , 2 , 3 , 4 , 5 , 6 are also discussed.  相似文献   

18.
Two coordination polymers (CPs), {[Zn2(BMB)(5‐AIPA)2] · 2H2O}n( 1 ) and [Zn(BMB)(5‐NIPA)]n( 2 ) {BMB = 1, 4‐bis[(2‐methyl‐imidazol‐1‐yl)methyl]benzene, 5‐AIPA = 5‐aminoisophthalic acid, 5‐NIPA = 5‐nitroisophthalic acid}, were synthesized under hydrothermal conditions. Compound 1 displays a 2D double‐layer structure, which is packed into a 3D supramolecule by interlayer hydrogen bonds and π–π stacking interactions. Compound 2 displays a threefold interpenetrating 3D network, which is composed of left‐handed helical chains and two types of meso‐helical chains along different directions.  相似文献   

19.
The reactions of anthraquinone‐2,6‐disulfonic acid disodium salt (Na2a‐2,6‐dad) with CuII, MnII, and ZnII with 1,10‐phenanthroline (phen) or 2,2′‐dipyridyl (bipy) under hydrothermal conditions formed two or three‐dimensional supramolecules of stoichiometries [Cu(a‐2,6‐dad)(phen)(H2O)3](H2O)4 ( 1 ), [Mn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 2 ), and [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ), which were synthesized and characterized. The arrangement around each metal atom is distorted octahedral. The ligands in all the compounds are engaged in intermolecular hydrogen bonding leading to the formation of hydrogen‐bonded networks, the compounds show novel π–π stacking interactions. Photoluminescence measurements indicate that the compound [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ) shows strong blue luminescence in the solid state at room temperature.  相似文献   

20.
The crystal structures and hydrogen‐bonding patterns of 3‐phenylpropylammonium benzoate, C9H14N+·C7H5O2, (I), and 3‐phenylpropylammonium 3‐iodobenzoate, C9H14N+·C7H4IO2, (II), are reported and compared. The addition of the I atom on the anion in (II) produces a different hydrogen‐bonding pattern to that of (I). In addition, the supramolecular heterosynthon of (II) produces a chiral crystal packing not observed in (I). Compound (I) packs in a centrosymmetric fashion and forms achiral one‐dimensional hydrogen‐bonded columns through charge‐assisted N—H...O hydrogen bonds. Compound (II) packs in a chiral space group and forms helical one‐dimensional hydrogen‐bonded columns with 21 symmetry, consisting of repeating R43(10) hydrogen‐bonded rings that are commonly observed in ammonium carboxylate salts containing chiral molecules. This hydrogen‐bond pattern, which has been observed repeatedly in ammonium carboxylate salts, thus provides a means of producing chiral crystal structures from achiral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号