首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An end‐station for resonant inelastic X‐ray scattering and (resonant) X‐ray emission spectroscopy at beamline ID20 of ESRF – The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high‐energy‐resolution applications, including partial fluorescence yield or high‐energy‐resolution fluorescence detected X‐ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non‐resonant inelastic X‐ray scattering measurements of valence electron excitations.  相似文献   

2.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

3.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

4.
The optical design of the BOREAS beamline operating at the ALBA synchrotron radiation facility is described. BOREAS is dedicated to resonant X‐ray absorption and scattering experiments using soft X‐rays, in an unusually extended photon energy range from 80 to above 4000 eV, and with full polarization control. Its optical scheme includes a fixed‐included‐angle, variable‐line‐spacing grating monochromator and a pair of refocusing mirrors, equipped with benders, in a Kirkpatrick–Baez arrangement. It is equipped with two end‐stations, one for X‐ray magnetic circular dichroism and the other for resonant magnetic scattering. The commissioning results show that the expected beamline performance is achieved both in terms of energy resolution and of photon flux at the sample position.  相似文献   

5.
Advances in resonant inelastic X‐ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3‐edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid‐angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3‐absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X‐ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27‐ID at the Advanced Photon Source. X‐rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X‐ray measurements, ray‐tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high‐resolution RIXS multi‐crystal analyzer system.  相似文献   

6.
7.
The application of a two‐dimensional photon‐counting detector based on a micro‐pixel gas chamber (µ‐PIC) to high‐resolution small‐angle X‐ray scattering (SAXS), and its performance, are reported. The µ‐PIC is a micro‐pattern gaseous detector fabricated by printed circuit board technology. This article describes the performance of the µ‐PIC in SAXS experiments at SPring‐8. A dynamic range of >105 was obtained for X‐ray scattering from a polystyrene sphere solution. A maximum counting rate of up to 5 MHz was observed with good linearity and without saturation. For a diffraction pattern of collagen, weak peaks were observed in the high‐angle region in one accumulation of photons.  相似文献   

8.
The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage‐ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X‐ray spectrum (above ~10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi‐purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X‐ray absorption spectroscopy at energies above 18 keV and high‐resolution diffraction experiments. More recently, new setups and photon‐hungry experiments such as total X‐ray scattering, X‐ray diffraction under high pressures, resonant X‐ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.  相似文献   

9.
The development of medium‐energy inelastic X‐ray scattering optics with meV and sub‐meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back‐reflection angular‐dispersion monochromator or analyzer, is analyzed. The results show that the multiple‐beam diffraction effect together with transmission‐induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four‐bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV‐ to sub‐meV‐resolution inelastic X‐ray scattering spectroscopy.  相似文献   

10.
A Johann‐type spectrometer for the study of high‐energy resolution fluorescence‐detected X‐ray absorption spectroscopy, X‐ray emission spectroscopy and resonant inelastic X‐ray scattering has been developed at BL14W1 X‐ray absorption fine structure spectroscopy beamline of Shanghai Synchrotron Radiation Facility. The spectrometer consists of three crystal analyzers mounted on a vertical motion stage. The instrument is scanned vertically and covers the Bragg angle range of 71.5–88°. The energy resolution of the spectrometer ranges from sub‐eV to a few eV. The spectrometer has a solid angle of about 1.87 × 0?3 of 4π sr, and the overall photons acquired by the detector could be 105 counts per second for the standard sample. The performances of the spectrometer are illustrated by the three experiments that are difficult to perform with the conventional absorption or emission spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

12.
This work reports a harmonic‐rejection scheme based on the combination of Si(111) monochromator and Si(220) harmonic‐rejection crystal optics. This approach is of importance to a wide range of X‐ray applications in all three major branches of modern X‐ray science (scattering, spectroscopy, imaging) based at major facilities, and especially relevant to the capabilities offered by the new diffraction‐limited storage rings. It was demonstrated both theoretically and experimentally that, when used with a synchrotron undulator source over a broad range of X‐ray energies of interest, the harmonic‐rejection crystals transmit the incident harmonic X‐rays on the order of 10?6. Considering the flux ratio of fundamental and harmonic X‐rays in the incident beam, this scheme achieves a total flux ratio of harmonic radiation to fundamental radiation on the order of 10?10. The spatial coherence of the undulator beam is preserved in the transmitted fundamental radiation while the harmonic radiation is suppressed, making this scheme suitable not only for current third‐generation synchrotron sources but also for the new diffraction‐limited storage rings where coherence preservation is an even higher priority. Compared with conventional harmonic‐rejection mirrors, where coherence is poorly preserved and harmonic rejection is less effective, this scheme has the added advantage of lower cost and footprint. This approach has been successfully utilized at the ultra‐small‐angle X‐ray scattering instrument at the Advanced Photon Source for scattering, imaging and coherent X‐ray photon correlation spectroscopy experiments. With minor modification, the harmonic rejection can be improved by a further five orders of magnitude, enabling even more performance capabilities.  相似文献   

13.
X‐ray Raman scattering (XRS) provides a bulk‐sensitive method of measuring the extended X‐ray absorption fine structure (EXAFS) of soft X‐ray absorption edges. Accurate measurements and data analysis procedures for the determination of XRS‐EXAFS of polycrystalline diamond are described. The contributions of various angular‐momentum components beyond the dipole limit to the atomic background and the EXAFS oscillations are incorporated using self‐consistent real‐space multiple‐scattering calculations. The properly extracted XRS‐EXAFS oscillations are in good agreement with calculations and earlier soft X‐ray EXAFS results. It is shown, however, that under certain conditions multiple‐scattering contributions to XRS‐EXAFS deviate from those in standard EXAFS, leading to noticeable changes in the real‐space signal at higher momentum transfers owing to non‐dipole contributions. These results pave the way for the accurate application of XRS‐EXAFS to previously inaccessible light‐element systems.  相似文献   

14.
X‐ray absorption and scattering spectroscopies involving the 3d transition‐metal K‐ and L‐edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M‐edges, which are below 100 eV. Synchrotron‐based X‐ray sources can have higher energy resolution at M‐edges. M‐edge X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) could therefore provide complementary information to K‐ and L‐edge spectroscopies. In this study, M2,3‐edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3‐edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different dd transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M‐edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high‐sensitivity and high‐resolution superconducting tunnel junction X‐ray detectors below 100 eV is also illustrated and discussed.  相似文献   

15.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

16.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

17.
The design, construction and commissioning of a beamline and spectrometer for inelastic soft X‐ray scattering at high resolution in a highly efficient system are presented. Based on the energy‐compensation principle of grating dispersion, the design of the monochromator–spectrometer system greatly enhances the efficiency of measurement of inelastic soft X‐rays scattering. Comprising two bendable gratings, the set‐up effectively diminishes the defocus and coma aberrations. At commissioning, this system showed results of spin‐flip, dd and charge‐transfer excitations of NiO. These results are consistent with published results but exhibit improved spectral resolution and increased efficiency of measurement. The best energy resolution of the set‐up in terms of full width at half‐maximum is 108 meV at an incident photon energy tuned about the Ni L3‐edge.  相似文献   

18.
Transmission X‐ray mirrors have been fabricated from 300–400 nm‐thick low‐stress silicon nitride windows of size 0.6 mm × 85 mm. The windows act as a high‐pass energy filter at grazing incidence in an X‐ray beam for the beam transmitted through the window. The energy cut‐off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut‐off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22°, a 0.3 mm × 0.3 mm X‐ray beam was allowed to pass through the mirror with a cut‐off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut‐off can be adjusted from 8 to 12 keV at an angle of 0.26° to 0.18°, respectively. The observed mirror transmittance was above 80% for a 300 nm‐thick film.  相似文献   

19.
X‐Treme is a soft X‐ray beamline recently built in the Swiss Light Source at the Paul Scherrer Institut in collaboration with École Polytechnique Fédérale de Lausanne. The beamline is dedicated to polarization‐dependent X‐ray absorption spectroscopy at high magnetic fields and low temperature. The source is an elliptically polarizing undulator. The end‐station has a superconducting 7 T–2 T vector magnet, with sample temperature down to 2 K and is equipped with an in situ sample preparation system for surface science. The beamline commissioning measurements, which show a resolving power of 8000 and a maximum flux at the sample of 4.7 × 1012 photons s?1, are presented. Scientific examples showing X‐ray magnetic circular and X‐ray magnetic linear dichroism measurements are also presented.  相似文献   

20.
As an increasingly important structural‐characterization technique, grazing‐incidence X‐ray scattering (GIXS) has found wide applications for in situ and real‐time studies of nanostructures and nanocomposites at surfaces and interfaces. A dedicated beamline has been designed, constructed and optimized at beamline 8‐ID‐E at the Advanced Photon Source for high‐resolution and coherent GIXS experiments. The effectiveness and applicability of the beamline and the scattering techniques have been demonstrated by a host of experiments including reflectivity, grazing‐incidence static and kinetic scattering, and coherent surface X‐ray photon correlation spectroscopy. The applicable systems that can be studied at 8‐ID‐E include liquid surfaces and nanostructured thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号