首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of δ13C in CO2 have traditionally relied on samples stored in sealed vessels and subsequently analyzed using magnetic sector isotope ratio mass spectrometry (IRMS), an accurate but expensive and high‐maintenance analytical method. Recent developments in optical spectroscopy have yielded instruments that can measure δ13CO2 in continuous streams of air with precision and accuracy approaching those of IRMS, but at a fraction of the cost. However, continuous sampling is unsuited for certain applications, creating a need for conversion of these instruments for batch operation. Here, we present a flask (syringe) adaptor that allows the collection and storage of small aliquots (20–30 mL air) for injection into the cavity ring‐down spectroscopy (CRDS) instrument. We demonstrate that the adaptor's precision is similar to that of traditional IRMS (standard deviation of 0.3‰ for 385 ppm CO2 standard gas). In addition, the concentration precision (±0.3% of sample concentration) was higher for CRDS than for IRMS (±7% of sample concentration). Using the adaptor in conjunction with CRDS, we sampled soil chambers and found that soil‐respired δ13C varied between two different locations in a piñon‐juniper woodland. In a second experiment, we found no significant discrimination between the respiration of a small beetle (~5 mm) and its diet. Our work shows that the CRDS system is flexible enough to be used for the analysis of batch samples as well as for continuous sampling. This flexibility broadens the range of applications for which CRDS has the potential to replace magnetic sector IRMS. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Studying ecosystem processes in the context of carbon cycling and climate change has never been more important. Stable carbon isotope studies of gas exchange within terrestrial ecosystems are commonly undertaken to determine sources and rates of carbon cycling. To this end, septum‐capped vials (‘Exetainers’) are often used to store samples of CO2 prior to mass spectrometric analysis. To evaluate the performance of such vials for preserving the isotopic integrity (δ13C) and concentration of stored CO2 we performed a rigorous suite of tests. Septum‐capped vials were filled with standard gases of varying CO2 concentrations (~700 to 4000 ppm), δ13C values (approx. ?26.5 to +1.8‰V‐PDB) and pressures (33 and 67% above ambient), and analysed after a storage period of between 7 and 28 days. The vials performed well, with the vast majority of both isotope and CO2 concentration results falling within the analytical uncertainty of chamber standard gas values. Although the study supports the use of septum‐capped vials for storing samples prior to mass spectrometric analysis, it does highlight the need to ensure that sampling chamber construction is robust (air‐tight). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Despite their relevancy, long‐term studies analyzing elevated CO2 effect in plant production and carbon (C) management on slow‐growing plants are scarce. A special chamber was designed to perform whole‐plant above‐ground gas‐exchange measurements in two slow‐growing plants (Chamaerops humilis and Cycas revoluta) exposed to ambient (ca. 400 µmol mol?1) and elevated (ca. 800 µmol mol?1) CO2 conditions over a long‐term period (20 months). The ambient isotopic 13C/12C composition (δ13C) of plants exposed to elevated CO2 conditions was modified (from ca. ?12.8‰ to ca. ?19.2‰) in order to study carbon allocation in leaf, shoot and root tissues. Elevated CO2 increased plant growth by ca. 45% and 60% in Chamaerops and Cycas, respectively. The whole‐plant above‐ground gas‐exchange determinations revealed that, in the case of Chamaerops, elevated CO2 decreased the photosynthetic activity (determined on leaf area basis) as a consequence of the limited ability to increase C sink strength. On the other hand, the larger C sink strength (reflected by their larger CO2 stimulatory effect on dry mass) in Cycas plants exposed to elevated CO2 enabled the enhancement of their photosynthetic capacity. The δ13C values determined in the different plant tissues (leaf, shoot and root) suggest that Cycas plants grown under elevated CO2 had a larger ability to export the excess leaf C, probably to the main root. The results obtained highlighted the different C management strategies of both plants and offered relevant information about the potential response of two slow‐growing plants under global climate change conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A common method to estimate the carbon isotopic composition of soil‐respired air is to use Keeling plots (δ13C versus 1/CO2 concentration). This approach requires the precise determination of both CO2 concentration ([CO2]), usually measured with an infrared gas analyser (IRGA) in the field, and the analysis of δ13C by isotope ratio mass spectrometry (IRMS) in the laboratory. We measured [CO2] with an IRGA in the field (n = 637) and simultaneously collected air samples in 12 mL vials for analysis of the 13C values and the [CO2] using a continuous‐flow isotope ratio mass spectrometer. In this study we tested if measurements by the IRGA and IRMS yielded the same results for [CO2], and also investigated the effects of different sample vial preparation methods on the [CO2] measurement and the thereby obtained Keeling plot results. Our results show that IRMS measurements of the [CO2] (during the isotope analysis) were lower than when the [CO2] was measured in the field with the IRGA. This is especially evident when the sample vials were not treated in the same way as the standard vials. From the three different vial preparation methods, the one using N2‐filled and overpressurised vials resulted in the best agreement between the IRGA and IRMS [CO2] values. There was no effect on the 13C‐values from the different methods. The Keeling plot results confirmed that the overpressurised vials performed best. We conclude that in the cases where the ranges of [CO2] are large (>300 ppm; in our case it ranged between 70 and 1500 ppm) reliable estimation of the [CO2] with small samples using IRMS is possible for Keeling plot application. We also suggest some guidelines for sample handling in order to achieve proper results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A non‐natural cofactor and formate driven system for reductive carboxylation of pyruvate is presented. A formate dehydrogenase (FDH) mutant, FDH*, that favors a non‐natural redox cofactor, nicotinamide cytosine dinucleotide (NCD), for generation of a dedicated reducing equivalent at the expense of formate were acquired. By coupling FDH* and NCD‐dependent malic enzyme (ME*), the successful utilization of formate is demonstrated as both CO2 source and electron donor for reductive carboxylation of pyruvate with a perfect stoichiometry between formate and malate. When 13C‐isotope‐labeled formate was used in in vitro trials, up to 53 % of malate had labeled carbon atom. Upon expression of FDH* and ME* in the model host E. coli, the engineered strain produced more malate in the presence of formate and NCD. This work provides an alternative and atom‐economic strategy for CO2 fixation where formate is used in lieu of CO2 and offers dedicated reducing power.  相似文献   

6.
A transition‐metal‐free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2, this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14C] and [13C]. A proof of concept with [11C] was also obtained with low molar activity valuable for distribution studies.  相似文献   

7.
Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high‐surface‐area hierarchically porous N‐doped carbon microflowers, which were assembled from porous nanosheets by a three‐step route: soft‐template‐assisted self‐assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure‐directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N‐doped carbon microflowers (A‐NCF‐4) have a hierarchically porous structure, high specific surface area (2309 m2 g?1), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm3 g?1). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g?1 were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2.  相似文献   

8.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

10.
In order to generate a reliable and long‐lasting stable isotope ratio standard for CO2 in samples of clean air, CO2 is liberated from well‐characterized carbonate material and mixed with CO2‐free air. For this purpose a dedicated acid reaction and air mixing system (ARAMIS) was designed. In the system, CO2 is generated by a conventional acid digestion of powdered carbonate. Evolved CO2 gas is mixed and equilibrated with a prefabricated gas comprised of N2, O2, Ar, and N2O at close to ambient air concentrations. Distribution into glass flasks is made stepwise in a highly controlled fashion. The isotopic composition, established on automated extraction/measurement systems, varied within very small margins of error appropriate for high‐precision air‐CO2 work (about ±0.015‰ for δ13C and ±0.025‰ for δ18O). To establish a valid δ18O relation to the VPDB scale, the temperature dependence of the reaction between 25 and 47°C has been determined with a high level of precision. Using identical procedures, CO2‐in‐air mixtures were generated from a selection of reference materials; (1) the material defining the VPDB isotope scale (NBS 19, δ13C = +1.95‰ and δ18O = ?2.2‰ exactly); (2) a local calcite similar in isotopic composition to NBS 19 (‘MAR‐J1’, δ13C = +1.97‰ and δ18O = ?2.02‰), and (3) a natural calcite with isotopic compositions closer to atmospheric values (‘OMC‐J1’, δ13C = ?4.24‰ and δ18O = ?8.71‰). To quantitatively control the extent of isotope‐scale contraction in the system during mass spectrometric measurement other available international and local carbonate reference materials (L‐SVEC, IAEA‐CO‐1, IAEA‐CO‐8, CAL‐1 and CAL‐2) were also processed. As a further control pure CO2 reference gases (Narcis I and II, NIST‐RM 8563, GS19 and GS20) were mixed with CO2‐free synthetic air. Independently, the pure CO2 gases were measured on the dual inlet systems of the same mass spectrometers. The isotopic record of a large number of independent batches prepared over the course of several months is presented. In addition, the relationship with other implementations of the VPDB‐scale for CO2‐in‐air (e.g. CG‐99, based on calibration of pure CO2 gas) has been carefully established. The systematic high‐precision comparison of secondary carbonate and CO2 reference materials covering a wide range in isotopic composition revealed that assigned δ‐values may be (slightly) in error. Measurements in this work deviate systematically from assigned values, roughly scaling with isotopic distance from NBS 19. This finding indicates that a scale contraction effect could have biased the consensus results. The observation also underlines the importance of cross‐contamination errors for high‐precision isotope ratio measurements. As a result of the experiments, a new standard reference material (SRM), which consists of two 5‐L glass flasks containing air at 1.6 bar and the CO2 evolved from two different carbonate materials, is available for distribution. These ‘J‐RAS’ SRM flasks (‘Jena‐Reference Air Set’) are designed to serve as a high‐precision link to VPDB for improving inter‐laboratory comparability. a Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The typical preparation route of carbon‐supported metallic catalyst is complex and uneconomical. Herein, we reported a thiol‐assisted one‐pot method by using 3‐mercaptopropionic acid (MPA) to synthesize carbon‐supported metal nanoparticles catalysts for efficient electrocatalytic reduction of carbon dioxide (CO2RR). We found that the synthesized Au?MPA/C catalyst achieves a maximum CO faradaic efficiency (FE) of 96.2% with its partial current density of ?11.4 mA/cm2, which is much higher than that over Au foil or MPA‐free carbon‐supported Au (Au/C). The performance improvement in CO2RR over the catalyst is probably derived from the good dispersion of Au nanoparticles and the surface modification of the catalyst caused by the specific interaction between Au nanoparticles and MPA. This thiol‐assisted method can be also extended to synthesize Ag?MPA/C with enhanced CO2RR performance.  相似文献   

12.
A facile method for the synthesis of substituted 3‐(2‐furylidene)‐2‐furanones has been developed using cyclofunctionalization reactions of 2,4‐dialkenyl‐1,3‐dicarbonyl compounds and iodine as electrophile in the presence of Na2CO3, in refluxing chloroform. Compounds 4 are obtained in modest to good yields and their structural identification was established by 1H NMR, 1H COSY, 13C NMR and 1H‐13C COSY. A mechanism has been proposed to rationalize the formation of the ylidene furanone.  相似文献   

13.
The natural abundance of carbon‐13 in blood proteins increases during the cachectic state and may be a biomarker for disease status. We hypothesized a corresponding drop in the relative abundance of 13C in breath CO2. Using the lipopolysacchride (LPS)‐induced endotoxemia model of the acute cachectic state, we demonstrated that the acute phase response causes shifts in the stable isotopes of carbon in exhaled CO2 (13CO2/12CO2 delta value) shortly after administration of LPS while glucocorticoid treatment does not. Mice were injected with LPS and stable isotopes of blood amino acids and carbon in exhaled CO2 were monitored. An increase in the relative isotopic mass of serum alanine, proline and threonine was observed at 3 h after LPS injection. Breath delta values began dropping immediately after administration of LPS, and were 4–5 delta values lower than those of the control animals by 2.5 h after injection. A corresponding drop in delta value was not observed with dexamethasone treatment. Thus protein synthesis during the acute phase response probably caused the fractionation of stable isotopes observed in the plasma amino acids and in exhaled breath 13CO2 delta values. The exhaled breath 13CO2 delta value may be a valuable real‐time biomarker of cachexia associated with an acute phase response due to endotoxemia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Natural abundance solid‐state multinuclear (13C, 15N and 29Si) cross‐polarization magic‐angle‐spinning NMR was used to study structures of three block copolymers based on polyamide and dimethylsiloxane and two polyamides, one of which including ferrocene in its structure. Assignment of most of the resonance lines in 13C, 15N and 29Si cross‐polarization magic‐angle‐spinning NMR spectra were suggested. A comparative analysis of 13C isotropic chemical shifts of polyamides with and without ferrocene has revealed a systematic shift towards higher δ ‐values (de‐shielding) explained as the incorporation of paramagnetic ferrocene into the polyamide backbone. In addition, the 13C NMR resonance lines for ferrocene‐based polyamide were significantly broadened, because of paramagnetic effects from ferrocene incorporated in the structure of this polyamide polymer. Single resonance lines with chemical shifts ranging from 88.1 to 91.5 ppm were observed for 15N sites in all of studied polyamide samples. 29Si chemical shifts were found to be around ?22.4 ppm in polydimethylsiloxane samples that falls in the range of chemical shifts for alkylsiloxane compounds. The CO2 capture performance of polyamide‐dimethylsiloxane‐based block copolymers was measured as a function of temperature and pressure. The data revealed that these polymeric materials have potential to uptake CO2 (up to 9.6 cm3 g?1) at ambient pressures and in the temperature interval 30–40 °C. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The geochemistry of multiply substituted isotopologues (‘clumped‐isotope’ geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. 13C18O16O, 18O18O, 15N2, 13C18O16O22?). Such species form the basis of carbonate clumped‐isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped‐isotope analysis by dual‐inlet gas‐source isotope ratio mass spectrometry (IRMS). We demonstrate long‐term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 1012 Ω resistor on three Thermo‐Finnigan 253 IRMS systems. Based on the analyses of heated CO2 gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO2 molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of ~0.01‰ are routinely achieved for measurements of the mass‐47 anomaly (a measure mostly of the abundance anomaly of 13C‐18O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is ~5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically ~10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped‐isotope thermometry of ±1.2 °C and ±2.4 °C, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In 2007, JRC‐IRMM began a series of atmospheric CO2 isotope measurements, with the focus on understanding instrumental effects, corrections as well as metrological aspects. The calibration approach at JRC‐IRMM is based on use of a plain CO2 sample (working reference CO2) as a calibration carrier and CO2‐air mixtures (in high‐pressure cylinders) to determine the method‐related correction under actual analytical conditions (another calibration carrier, in the same form as the samples). Although this approach differs from that in other laboratories, it does give a direct link to the primary reference NBS‐19‐CO2. It also helps to investigate the magnitude and nature for each of the instrumental corrections and allows for the quantification of the uncertainty introduced. Critical tests were focused on the instrumental corrections. It was confirmed that the use of non‐symmetrical capillary crimping (an approach used here to deal with small samples) systematically modifies δ13C(CO2) and δ18O(CO2), with a clear dependence on the amount of extracted CO2. However, the calibration of CO2‐air mixtures required the use of the symmetrical dual‐inlet mode. As a proof of our approach, we found that δ13C(CO2) on extracts from mixtures agreed (within 0.010‰) with values obtained from the ‘mother’ CO2 used for the mixtures. It was further found that very low levels of hydrocarbons in the pumping systems and the isotope ratio mass spectrometry (IRMS) instrument itself were critical. The m/z 46 values (consequently the calculated δ18O(CO2) values) are affected by several other effects with traces of air co‐trapped with frozen CO2 being the most critical. A careful cryo‐distillation of the extracted CO2 is recommended. After extensive testing, optimisation, and routine automated use, the system was found to give precise data on air samples that can be traced with confidence to the primary standards. The typical total combined uncertainty in δ13C(CO2) and δ18O(CO2) on the VPDB‐CO2 scale, estimated on runs of CO2‐air mixtures, is ±0.040‰ and 0.060‰ (2‐σ values). Inter‐comparison with MPI‐BGC resulted in a scale discrepancy of a similar magnitude. Although the reason(s) for this discrepancy still need to be understood, this basically confirms the approach of using specifically prepared CO2‐air mixtures as a calibration carrier, in order to achieve scale unification among laboratories. As important practical application and as a critical test, JRC‐IRMM took part in the passenger aircraft‐based global monitoring project CARIBIC ( http://www.caribic‐atmospheric.com ). In this way, reliable CO2 isotope data for the tropopause region and the free troposphere were obtained. From June 2007 to January 2009, approximately 500 CARIBIC air samples have been analysed. Some flights demonstrated a compact correlation of both δ13C(CO2) and δ18O(CO2) with respect to CO2 concentration, demonstrating mixing of tropospheric and stratospheric air masses. These excellent correlations provide an independent, realistic data quality check. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Porous nitrogen‐rich carbon (POF‐C‐1000) that was synthesized by using a porous organic framework (POF) as a self‐sacrificing host template in a nanocasting process possessed a high degree of graphitization in an ordered structural arrangement with large domains and well‐ordered arrays of carbon sheets. POF‐C‐1000 exhibits favorable electrocatalytic activity for the oxygen‐reduction reaction (ORR) with a clear positive shift of about 40 mV in the onset potential compared to that of a traditional, commercially available Pt/C catalyst. In addition, irrespective of its moderate surface area (785 m2 g?1), POF‐C‐1000 showed a reasonable H2 adsorption of 1.6 wt % (77 K) and a CO2 uptake of 3.5 mmol g?1 (273 K).  相似文献   

18.
The coordination of N‐heterocyclic carbene (NHC) ligands to the surface of 3.7 nm palladium nanoparticles (PdNPs) can be unambiguously established by observation of Knight shift (KS) in the 13C resonance of the carbenic carbon. In order to validate this coordination, PdNPs with sizes ranging from 1.3 to 4.8 nm were prepared by thermal decomposition or reduction with CO of a dimethyl NHC PdII complex. NMR studies after 13CO adsorption established that the KS shifts the 13C resonances of the chemisorbed molecules several hundreds of ppm to high frequencies only when the particle exceeds a critical size of around 2 nm. Finally, the resonance of a carbenic carbon is reported to be Knight‐shifted to 600 ppm for 13C‐labelled NHCs bound to PdNPs of 3.7 nm. The observation of these very broad KS resonances was facilitated by using Car–Purcell–Meiboom–Gill (CPMG) echo train acquisition NMR experiments.  相似文献   

19.
An innovative technique to obtain high‐surface‐area mesostructured carbon (2545 m2 g?1) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC‐1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK‐3 obtained by the HF etching method (13.0 wt %). JNC‐1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK‐3 (1.2 wt %) at ?196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC‐1 led to superior supercapacitor performance, with a specific capacitance of 292 F g?1 and 182 F g?1 at a drain rate of 1 A g?1 and 50 A g?1, respectively, in 1 m H2SO4 compared to CMK‐3 and activated carbon.  相似文献   

20.
Nitrogenase cofactors can be extracted into an organic solvent to catalyze the reduction of cyanide (CN), carbon monoxide (CO), and carbon dioxide (CO2) without using adenosine triphosphate (ATP), when samarium(II) iodide (SmI2) and 2,6‐lutidinium triflate (Lut‐H) are employed as a reductant and a proton source, respectively. Driven by SmI2, the cofactors catalytically reduce CN or CO to C1–C4 hydrocarbons, and CO2 to CO and C1–C3 hydrocarbons. The C C coupling from CO2 indicates a unique Fischer–Tropsch‐like reaction with an atypical carbonaceous substrate, whereas the catalytic turnover of CN, CO, and CO2 by isolated cofactors suggests the possibility to develop nitrogenase‐based electrocatalysts for the production of hydrocarbons from these carbon‐containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号