首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rigid and monodisperse spherical polymer particles with 2.36 ± 0.18 μm diameter containing residual surface vinyl groups were prepared by photoinitiated precipitation polymerization of divinylbenzene. Anti‐Markovnikov addition of HBr to the surface vinyl groups yielded a 2‐bromoethyl functionality that was used as macroinitiator for atom transfer radical polymerization (ATRP), providing the possibility for further functionalization by controlled “grafting from” processes. This was demonstrated by grafting of glycidyl methacrylate brushes from the particle surface, using an ATRP system based on CuBr and pentamethyl diethylenetriamine. Existence of a methacrylic overlayer was verified by FTIR and XPS measurements, and the grafted particles were easily dispersed in water, confirming conversion of the particle surface from hydrophobic to hydrophilic. Hydrobromination of residual vinyl groups yields a macroinitiator that can be used for grafting of glycidyl methacrylate by ATRP. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1259–1265, 2009  相似文献   

2.
Poly(2,2,2‐trifluoroethyl methacrylate) (PTFEMA), a partially fluorinated polymer, was directly grafted from silicon wafer surfaces by a surface‐initiated atom‐transfer radical polymerization (ATRP). The polymer layer thickness increased linearly with monomer conversion and molecular weight of free polymers in solution. The thickness was mainly determined by the experimental conditions such as activator/deactivator ratio, monomer/catalyst ratio, and monomer concentration. PTFEMA layers of more than 100‐nm thick were obtained. The grafted PTFEMA chains were “living” and allowed the extension of a second block of PMMA. X‐ray photoelectron spectroscopy study showed that the chemical compositions at the surfaces agreed well with their theoretical values. A novel surface‐attachable difunctional initiator was also synthesized and applied to the grafting of PTFEMA. The grafting density was doubled using this difunctional initiator, from 0.48 to 0.86 chains/nm2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1252–1262, 2006  相似文献   

3.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

4.
This work concerns the development of hybrid organic/inorganic membranes from styrenic phosphonic polymers. The phosphonic charge, composed phosphonic polymers grafted onto silica nanoparticles, was obtained by “grafting onto” method. It consists of synthesizing first the polymer, and then the terminal functions of the latter react with silanol groups of silica. The phosphonated polymer was isolated in two steps, that is, an ATRP polymerization of 4‐chloromethylstyrene followed by Mickaelïs‐Arbusov reaction. After the grafting onto silica, membranes are prepared through formulation containing the charge and the polymer matrix PVDF‐HFP, which are dispersed in DMF. The acid form is obtained by hydrolysis in chlorydric acid. The membrane possessing a 40 wt % charge ratio (IEC = 1.08 meq g?1) was selected as reference. A proton conductivity of 65 mS cm?1 at 80 °C was measured in immersed conditions. When the membrane is no more immersed, the value decreases drastically (0.21 mS cm?1 at 120 °C and 25% RH). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Graphene–polymer composites of positive‐charged poly(dimethyl aminoethyl acrylate), negative‐charged poly(acrylic acid), and neutral polystyrene were prepared by “graft from” methodology using reversible addition fragmentation chain transfer (RAFT) polymerization via a pyrene functional RAFT agent (PFRA) modified graphene precursor. Fluorescence spectroscopy and attenuated total reflection infrared (ATR‐IR) evidenced that the PFRA was attached on the graphene basal planes by π–π stacking interactions, which is strong enough to anti‐dissociation in the polymerization mixture up to 80°C. Atomic force microscopy (AFM) revealed that the thickness of a graphene–polymer sheet was about 4.0 nm. Graphene composites of different polymers with the same polymerization degree exhibited similar conductivity; however, when the polymer chain was designed as random copolymer the conductivity was significantly decreased. It was also observed that the longer the grafted polymer chains the lower the conductivity. ATRIR spectroscopy and thermogravimetric analysis were also performed to characterize the as‐prepared composites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

7.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

8.
Zinc antimonate nanoparticles consisting of antimony and zinc oxide were surface modified in a methanol solvent medium using triethoxysilane‐based atom transfer radical polymerization (ATRP) initiating group (i.e.,) 6‐(2‐bromo‐2‐methyl) propionyloxy hexyl triethoxysilane. Successful grafting of ATRP initiator on the surface of nanoparticles was confirmed by thermogravimetric analysis that shows a significant weight loss at around 250–410 °C. Grafting of ATRP initiator onto the surface was further corroborated using Fourier transform Infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS). The surface‐initiated ATRP of methyl methacrylate (MMA) mediated by a copper complex was carried out with the initiator‐fixed zinc antimonate nanoparticles in the presence of a sacrificial (free) initiator. The polymerization was preceded in a living manner in all examined cases; producing nanoparticles coated with well defined poly(methyl methacrylate) (PMMA) brushes with molecular weight in the range of 35–48K. Furthermore, PMMA‐grafted zinc antimonate nanoparticles were characterized using Thermogravimetric analysis (TGA) that exhibit significant weight loss in the temperature range of 300–410 °C confirming the formation of polymer brushes on the surface with the graft density as high as 0.26–0.27 chains/nm2. The improvement in the dispersibility of PMMA‐grafted zinc antimonate nanoparticles was verified using ultraviolet‐visible spectroscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
A new approach was developed for synthesis of certain A3B3‐type of double hydrophilic or amphiphilic miktoarm star polymers using a combination of “grafting onto” and “grafting from” methods. To achieve the synthesis of desired miktoarm star polymers, acetyl protected poly(ethylene glycol) (PEG) thiols (Mn = 550 and 2000 g mol?1) were utilized to generate A3‐type of homoarm star polymers through an in situ protective group removal and a subsequent thiol–epoxy “click” reaction with a tris‐epoxide core viz. 1,1,1‐tris(4‐hydroxyphenyl)ethane triglycidyl ether. The secondary hydroxyl groups generated adjacent to the core upon the thiol–epoxy reaction were esterified with α‐bromoisobutyryl bromide to install atom transfer radical polymerization (ATRP) initiating sites. ATRP of N‐isopropylacrylamide (NIPAM) using the three‐arm star PEG polymer fitted with ATRP initiating sites adjacent to the core afforded A3B3‐type of double hydrophilic (PEG)3[poly(N‐isopropylacrylamide)] (PNIPAM)3 miktoarm star polymers. Furthermore, the generated hydroxyl groups were directly used as initiator for ring‐opening polymerization of ε‐caprolactone to prepare A3B3‐type of amphiphilic (PEG)3[poly(ε‐caprolactone)]3 miktoarm star polymers. The double hydrophilic (PEG)3(PNIPAM)3 miktoarm star polymers showed lower critical solution temperature around 34 °C. The preliminary transmission electron microscopy analysis indicated formation of self‐assembly of (PEG)3(PNIPAM)3 miktoarm star polymer in aqueous solution. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 146–156  相似文献   

10.
Conjugated polymers were grafted onto cellulose substrates in an effort to create a general method for the synthesis of conjugated polymer/cellulose hybrid materials. In this report, we describe the grafting of poly(fluorene), poly(fluorenevinylene), and a poly(fluorene‐ethynylene‐phenylene) onto modified cellulose paper substrates using Suzuki, Heck, and Sonogashira‐type polymerizations, respectively. The application of these three widely used coupling chemistries to surface‐grafted conjugated polymers on cellulose provides a general route to cellulose‐based hybrid materials tunable with almost any aromatic repeat structure for specific applications. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Fully sustainable shape memory polymers (SMPs) derived from ethyl cellulose (EC, derived from cellulose), tetrahydrofurfuryl methacrylate (THFMA, derived from furfural), and lauryl methacrylate (LMA, derived from fatty acids) were prepared via “grafting from” atom transfer radical polymer (ATRP). The “grafting from” ATRP strategy allows to fabricate SMPs with EC as a backbone, and LMA and THFMA copolymer as a side chain. By utilizing the one‐pot and sequential monomer addition approach, two types of SMPs with random/semi‐block side chain architectures were obtained, respectively. Random/semi‐block side chain architecture of SMPs was confirmed by DSC, DMA, SAXS, and TEM. The presence of microphase separation in the SMPs with semi‐block side chain architecture provided two distinct thermal transitions, which was needed for triple‐shape memory behavior. Shape memory study showed that SMPs with semi‐block side chain architecture exhibited excellent triple‐shape memory property, and also had higher shape recovery speed and shape recovery ratio than those with random side chain architecture. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1711–1720  相似文献   

12.
Previous approaches used to decorate latently reactive conjugated polymer‐coated carbon nanotube complexes have utilized “grafting‐to” strategies. Here, we coat the carbon nanotube surface with a conjugated polymer whose side chains contain the radical initiator, α‐bromoisobutyrate, which enables atom transfer radical polymerization (ATRP) from the polymer–nanotube surface. Using light to generate Cu(I) in situ, ATRP is used to grow narrow dispersity polymer chains from the polymer–nanotube surface. We confirm the successful polymerization of (meth)acrylates from the polymer–nanotube surface using a combination of gel permeation chromatography and infrared spectroscopy. Strikingly, we demonstrate that nanotube optoelectronic properties are preserved after radical‐mediated polymer grafting using Raman spectroscopy and photoluminescence mapping. Overall, this work elucidates a method to grow narrow dispersity polymer chains from the polymer–nanotube surface using light‐driven radical chemistry, with concurrent preservation of nanotube optoelectronic properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2015–2020  相似文献   

13.
Densely grafted copolymers were synthesized using the “grafting from” approach via the combination of reversible addition‐fragment chain transfer polymerization (RAFT) and atom transfer radical polymerization (ATRP). First, a novel functional monomer, 2,3‐di(2‐bromoisobutyryloxy)ethyl acrylate (DBPPA), with two initiating groups for ATRP was synthesized. It was then polymerized via RAFT polymerization to give macroinitiators for ATRP with controlled molecular weights and narrow molecular weight distributions. Last, ATRP of styrene was carried out using poly(DBPPA)s as macroinitiators to prepare comblike poly(DBPPA)‐graft‐polystyrenes carrying double branches in each repeating unit of backbone via “grafting from” approach. Furthermore, poly(DBPPA)‐graft‐[polystyrene‐block‐poly(t‐BA)]s and their hydrolyzed products poly(DBPPA)‐graft‐[polystyrene‐block‐poly(acrylic acid)]s were also successfully prepared. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 362–372, 2008  相似文献   

14.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

15.
Functional polymeric materials with desired properties can be designed by precise control of macromolecular architectures. Over the recent years, click reactions have enabled efficient synthesis of a variety of polymers with different topologies via efficient polymer–polymer conjugations. While the copper catalyzed Huisgen type (3+2) dipolar cycloaddition between azide and alkyne has been widely used toward this goal, the Diels–Alder (DA) reaction offers an alternative click reaction that allow efficient macromolecular conjugations, oftentimes without the need of any additional reagent or catalyst. This article highlights, with illustrative examples, the power of the DA “click” reaction to efficiently synthesize a variety of different well‐defined macromolecular constructs in a modular fashion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Well defined graft copolymers are prepared by “grafting from” atom transfer radical polymerization (ATRP) at room temperature (30 °C). The experiments were aimed at grafting methacrylates and styrene at latent initiating sites of polystyrene. For this purpose, the benzylic hydrogen in polystyrene was subjected to allylic bromination with N‐bromosuccinimide and azobisisobutrylnitirle to generate tertiary bromide ATRP initiating sites (Br? C? PS). The use of Br? C? PS with lesser mol % of bromide initiating groups results in better control and successful graft copolymerization. This was used to synthesize a series of new graft copolymers such as PS‐g‐PBnMA, PS‐g‐PBMA, PS‐g‐GMA, and PS‐g‐(PMMA‐b‐PtBA) catalyzed by CuBr/PMDETA system, in bulk, at room temperature. The polymers are characterized by GPC, NMR, FTIR, TEM, and TGA. Graft copolymerization followed by block polymerization enabled the synthesis of highly branched polymer brush, in which the grafting density can be adjusted by appropriate choice of bromide concentration in the polystyrene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3818–3832, 2007  相似文献   

17.
The ABC type miktoarm star terpolymer was prepared utilizing “core‐in” and “core‐out” methods via combination of Diels–Alder reaction (DA), stable free radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, in DA reaction, poly(ethylene glycol)‐maleimide (PEG‐maleimide) precursor was reacted with succinic acid anthracen‐9‐ylmethyl ester 3‐(2‐bromo‐2‐methyl‐propionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yloxy)‐ethoxy‐carbonyl]‐propyl ester, 8 , to give DA adduct, 9 , which has appropriate functional groups for SFRP and ATRP. Second, a previously obtained 9 was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PEG‐polystyrene (PEG‐PSt) precursor with a bromine functionality in the core was employed as a macroinitiator for ATRP of tert‐butylacrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C to give ABC type miktoarm star terpolymer (PEG‐PSt‐PtBA) with controlled molecular weight and low polydispersity (Mw/Mn < 1.27). The obtained polymers were characterized by gel permeation chromatography and 1H NMR. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 499–509, 2006  相似文献   

18.
Well‐defined polymer‐nanoparticle hybrids were prepared by a newly reported method: atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) mediated by iron catalyst. The kinetics of the surface‐initiated AGET ATRP of methyl methacrylate from the silica nanoparticles, which was mediated by FeCl3/triphenylphosphine as a catalyst complex, ascorbic acid as a reducing agent, N,N‐dimethylformamide as the solvent in the presence of a “sacrificial” (free) initiator, was studied. Both the free and grafted polymers were grown in a control manner. The chemical composition of the nanocomposites was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermogravimetric analysis was used to estimate the content of the grafted organic compound, and transmission electron micrographs was used to observe the core‐shell structure of the hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2006–2015, 2010  相似文献   

19.
Thermally cleavable multiarm star polymers containing thermo‐reversible furan–maleimide cycloadduct‐based core were synthesized using dendritic macroinitiators. Peripheries of dendritic macroinitiators were modified with bromine containing free radical initiators to obtain multiarm polymers by utilizing atom transfer radical polymerization (ATRP). Cleavage of thus obtained multiarm polymers was achieved via the retro Diels–Alder cycloreversion reaction of the furan–maleimide core at elevated temperatures. As an alternative approach, combination of multiarm polymers containing a furan and maleimide functional group at their core was attempted to realize that the steric bulk does not allow their formation. Hence the “grafting‐from” route using a thermally fragmentable trigger containing multiarm initiators provides a plausible methodology for fabrication of such thermally cleavable multiarm polymeric materials. Syntheses of dendritic initiators, formation of star polymers as well as their fragmentation were followed by proton nuclear magnetic resonance spectroscopy and size exclusion chromatography. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 885–893  相似文献   

20.
The hydrophobic solid surface modification with fluorine‐containing monomers has received tremendous attention because of its unique structure and excellent property. However, these hydrophobic films normally suffer from two major problems: one is weak interface interaction between fluoropolymers and substrates, and the other is the high cost of fluorine‐containing monomers. Herein, with the aim of feasible industrial application, a facile in situ UV photo‐grafting method is reported, which could ensure the formation of chemical bonds between fluoropolymer‐grafted layer and substrate with a low cost commercial 2,2,2‐trifluoroethyl methacrylate (TFEMA) as monomer. With low‐density polyethylene (LDPE) film as a model substrate, four kinds of poly‐TFEMA‐grafted layer are fabricated on LDPE films with different surface morphologies: polymer brush, polymer network, crosslinked nanoparticles, and a micro‐ and nanoscale hierarchical structure. The experimental results showed that the water contact angles (CAs) of the LDPE films grafted with polymer brush, polymer network, and crosslinked nanoparticles were (103 ± 2)°, (95 ± 2)°, and (122 ± 2)°, respectively, which were much higher than that of LDPE film. The introduction of micro‐ and nanoscale hierarchical structures can dramatically improve the surface roughness, which will further enhance the film hydrophobicity, and the water CA can reach as high as (140 ± 1)°. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1059–1067  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号