首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The controlled free‐radical homopolymerization of n‐butyl acrylate was studied in aqueous miniemulsions at 112 and 125 °C with a low molar mass alkoxyamine unimolecular initiator and an acyclic β‐phosphonylated nitroxide mediator, Ntert‐butyl‐N‐(1‐diethylphosphono‐2,2‐dimethylpropyl) nitroxide, also called SG1. The polymerizations led to stable latices with 20 wt % solids and were obtained with neither coagulation during synthesis nor destabilization over time. However, in contrast to latices obtained via classical free‐radical polymerization, the average particle size of the final latices was large, with broad particle size distributions. The initial [SG1]0/[alkoxyamine]0 molar ratio was shown to control the rate of polymerization. The fraction of SG1 released upon macroradical self‐termination was small with respect to the initial alkoxyamine concentration, indicating a very low fraction of dead chains. Average molar masses were controlled by the initial concentration of alkoxyamine and increased linearly with monomer conversion. The molar mass distribution was narrow, depending on the initial concentration of free nitroxide in the system. The initiator efficiency was lower than 1 at 112 °C but was very significantly improved when either a macroinitiator was used at 112 °C or the polymerization temperature was raised to 125 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4410–4420, 2002  相似文献   

2.
The radical polymerization of 1,3‐butadiene initiated by hydrogen peroxide and controlled by TEMPO is presented. Various parameters (e.g., the temperature and the [TEMPO]o/[H2O2]o initial molar ratio, γo), were studied to optimize the reaction. It was observed that the higher the temperature, the higher the yield, with optimal yields noted for γo = 0.10 with high molecular weights and broad polydispersity indexes. In addition, the kinetics of radical polymerization showed a decrease (by one order of magnitude) of the macroradical concentration all along the reaction. The ln [butadiene]/[butadiene]o increased relative to time and behaved linearly after 90 min. Further, the concentration of free TEMPO was ≈1000 times lower than the initial concentration, in good agreement with the decoloring of the medium. Thus a quasi‐living behavior of butadiene was noted from this system. Finally, the hydrolysis of these oligomers, either in the presence of zinc or thermally by means of a thin‐layer evaporator under vacuum allowed the production of telechelic hydroxy polybutadienes, the second technique enabling the obtaining of higher molecular weights by coupling and the recovery of TEMPO. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3293–3302, 2000  相似文献   

3.
Kinetics of the free radical polymerization of styrene at 110 °C has been investigated in the presence of C‐phenyl‐Ntert‐butylnitrone (PBN) and 2,2′‐azobis(isobutyronitrile) (AIBN) after prereaction in toluene at 85 °C. The effect of the prereaction time and the PBN/AIBN molar ratio on the in situ formation of nitroxides and alkoxyamines (at 85 °C), and ultimately on the control of the styrene polymerization at 110 °C, has been investigated. As a rule, the styrene radical polymerization is controlled, and the mechanism is one of the classical nitroxide‐mediated polymerization. Only one type of nitroxide (low‐molecular‐mass nitroxide) is formed whatever the prereaction conditions at 85 °C, and the equilibrium constant (K) between active and dormant species is 8.7 × 10?10 mol L?1 at 110 °C. At this temperature, the dissociation rate constant (kd) is 3.7 × 10?3 s?1, the recombination rate constant (kc) is 4.3 × 106 L mol?1 s?1, whereas the activation energy (Ea,diss.), for the dissociation of the alkoxyamine at the chain‐end is ~125 kJ mol?1. Importantly, the propagation rate at 110 °C, which does not change significantly with the prereaction time and the PBN/AIBN molar ratio at 85 °C, is higher than that for the thermal polymerization at 110 °C. This propagation rate directly depends on the equilibrium constant K and on the alkoxyamine and nitroxide concentrations, as well. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1219–1235, 2007  相似文献   

4.
During nitroxide‐mediated polymerization, the polymerization time decreases with an increasing rate constant of the cleavage of the NO? C bond of dormant alkoxyamines. Thus, knowledge of the factors influencing this cleavage is of considerable interest. We have prepared a series of SG1 2‐[Ntert‐butyl‐N‐(1‐diethoxyphosphoryl‐2,2‐dimethylpropyl)aminoxyl] based alkoxyamines [SG1‐CH(Me)CO2R] with various R groups (alkyl or aryl) and measured the homolysis rate constants (kd). kd decreases with the bulkiness and increases with the polarity of the R group. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3504–3515, 2004  相似文献   

5.
Poly(methyl methacrylate)‐b‐polystyrene (PMMA‐b‐PS) containing a benzo‐15‐crown‐5 unit at the junction point was prepared by combining atom transfer radical polymerization and nitroxide‐mediated radical polymerization. For this purpose, 6,7,9,10,12,13,15,16‐octahydro‐5,8,11,14,17‐pentaoxa‐benzocyclopentadecene‐2‐carboxylic acid 3‐(2‐bromo‐2‐methyl‐propionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yloxy)‐ethoxycarbonyl]‐propyl ester ( 3 ) was synthesized and used as an initiator in atom transfer radical polymerization of methyl methacrylate in the presence of CuCl and pentamethyldiethylenetriamine at 60°C. A linear behavior was observed in both plots of ln([M]0/[M]) versus time and Mn,GPC versus conversion indicating that the polymerization proceeded in a controlled/living manner. Thus obtained PMMA precursor was used as a macroinitiator in nitroxide‐mediated radical polymerization of styrene (St) at 125°C to give well‐defined PMMA‐b‐PS with crown ether per chain. Kinetic data were also obtained for copolymerization. Moreover, potassium picrate (K+ picrate) complexation of 3 and PMMA‐b‐PS copolymer was studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3242–3249, 2006  相似文献   

6.
The synthesis of new 7‐membered diazepanone alkoxyamines [2,2,7,7‐tetramethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 3 ) and 2,7‐diethyl‐2,3,7‐trimethyl‐1‐(1‐phenyl‐ethoxy)‐[1,4]diazepan‐5‐one ( 8 )] through the Beckmann rearrangement of piperidin‐4‐one alkoxyamines was developed. Both 3 and 8 were evaluated as initiators and regulators for the nitroxide‐mediated radical polymerization of styrene and n‐butyl acrylate. 8 , a sterically highly hindered alkoxyamine readily available as a crystalline solid, allowed the fast and controlled polymerization and preparation of polymers with low polydispersity indices (1.2–1.4) up to a degree of polymerization of about 100. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3332–3341, 2004  相似文献   

7.
Branched and star‐branched polymers were successfully synthesized by the combination of two successive controlled radical polymerization methods. A series of linear and star poly(n‐butyl acrylate)‐co‐poly(2‐(2‐bromoisobutyryloxy) ethyl acrylate) statistical copolymers, P(nBA‐co‐BIEA)x, were first synthesized by nitroxide‐mediated polymerization (NMP at T > 100 °C). The subsequent polymerization of n‐butyl acrylate by single electron transfer‐living radical polymerization (SET‐LRP at T = 25 °C), initiated from the brominated sites of the P(nBA‐co‐BIEA)x copolymer, produced branched or star‐branched poly(n‐butyl acrylate) (PnBA). Both types of polymerizations (NMP and SET‐LRP) exhibited features of a controlled polymerization with linear evolutions of logarithmic conversion versus time and number‐average molar masses versus conversion for final Mn superior to 80,000 g mol?1. The branched and star‐branched architectures with high molar mass and low number of branches were fully characterized by size exclusion chromatography. The Mark–Houwink Sakurada relationship and the analysis of the contraction factor (g′ = ([η]branched/[η]linear)M) confirmed the elaboration of complex PnBA. The zero‐shear viscosities of the linear, star‐shaped, branched, and star‐branched polymers were compared. The modeling of the rheological properties confirmed the synthesis of the branched architectures. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Asymmetrically substituted head‐to‐head polyacetylenes with phenyl and triphenylamine, thienyl or pyrenyl side groups were synthesized through anionic or controlled radical polymerization of 2,3‐disubstituted‐1,3‐butadienes and subsequent dehydrogenation process. Anionic polymerizations of the designed monomers bearing pendent triphenylamine and thienyl group gave narrow disperse disubstituted precursor polybutadienes with exclusive 1,4‐ or 4,1‐structure, which were confirmed by GPC and NMR measurements. In addition, the monomers possessing pyrenyl group were polymerized via nitroxide mediated radical polymerization and the resulting polymers were obtained with controlled molecular weight and low polydispersities. These polybutadiene precursors were then dehydrogenated in the presence of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone. Thus asymmetrically substituted head‐to‐head polyacetylenes were obtained as indicated by 1H NMR. The properties of polybutadiene precursors and the corresponding polyacetylenes were analyzed by UV–vis, DSC, and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 395–402  相似文献   

9.
A bicomponent initiation system consisting of 2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPO) and the water soluble initiator potassium persulfate (KPS) was used to develop a robust and versatile semibatch emulsion polymerization process to obtain polystyrene (PS) latexes with solids contents of 5–40 wt %. A window of operating conditions was found that yielded high conversion (>95%) stable latexes and well controlled polymers, overcoming limitations found in previous attempts at developing similar processes using TEMPO. The critical parameters studied were surfactant concentration, monomer concentration in the nucleation step and the monomer feed rate in the semibatch step. Methyl acrylate (MA) was used in the nucleation step to improve the nitroxide efficiency (NEff). Latexes having molecular weight distribution (MWD) with dispersity (?) lower than 1.5, average particle size (Dp) from ≈32 to ≈500 nm, nitroxide efficiencies NEff up to ≈1.0 and monomer conversions >90% were obtained in less than 12 h with solids contents up to 40 wt %. These results constitute a significant advance over prior efforts in TEMPO‐mediated polymerization in aqueous dispersions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 49–62  相似文献   

10.
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
The influence of nitroxide concentration, solvent, and temperature on the nitroxide‐mediated radical polymerization of 3‐vinylpyridine (3VP) was examined. Long‐chain poly(3‐vinylpyridine)s with low polydispersities were synthesized. The initial 2,2,6,6‐tetramethylpiperidin‐1‐oxyl concentration had no influence on the kinetics of the polymerization but was responsible for the obtained molar weights. Compared with the polymerization of styrene, the polymerization of 3VP proved quite fast. The influence of temperature on the reaction rate was also demonstrated, and the polymerization could be controlled even at 110 °C. Some polymerizations were also performed in solution to test the influence of a solvent such as ethylene–glycol, whose effect on the polymerization of 3VP was dependent on temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3067–3073, 2000  相似文献   

12.
Controlled cationic polymerization of trans‐1‐methoxy‐1,3‐butadiene was achieved through the design of appropriate initiating systems, yielding soluble polymers with controllable molecular weights. The combined use of SnCl4 or GaCl3 as a Lewis acid catalyst and a weak Lewis base in conjunction with HCl as a protonogen resulted in efficient and controlled polymerization. The Mn values of the product polymers increased linearly along the theoretical line, which indicates that intermolecular crosslinking reactions negligibly occurred. In addition, the polymer microstructure was critically dependent on the weak Lewis base employed. In particular, the use of tetrahydrofuran as an additive resulted in the highest 4,1/4,3‐structure ratio (96/4). Weak Lewis bases also affected the polymerization rates but exhibited unique trends that differed from their effects on the cationic polymerization of alkyl vinyl ethers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 288–296  相似文献   

13.
Well‐defined bimodal molecular weight distribution (MWD) polystyrene and polystyrene‐b‐poly(acrylonitrile) were successfully synthesized using a pair of mono/difunctional trithiocarbonate RAFT agents 1 and 2 via one‐pot RAFT polymerization. The kinetics of RAFT polymerization for styrene in bulk with a molar ratio of [St]0:[AIBN]0:[ 1 ]0:[ 2 ]0 = 1200:1:2.5:2.5 was studied at 75°C. The results indicated that the system showed excellent controllability and “living” characteristics to both higher and lower molecular weight fractions, providing an efficient and facile way to producing bimodal MWD (co)polymers with both controlled molecular weight (MW) and MWD in molecular level, and the plausible mechanism was discussed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005  相似文献   

15.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The pyridyl alkoxyamine, which is composed of the 1‐phenylethyl radical and a pyridyl nitroxide fragments, displays protonation‐controlled C? ON bond homolysis. Its dissociation rate constant kd value is approximately halved at 100 °C in tert‐butyl benzene when it is protonated by one equivalent of trifluoroacetic acid. Moreover, the bulk polymerization of styrene at 125 °C is performed with a good control over the molecular weight and the dispersity when initiated with this alkoxyamine under its basic and acidic forms but the protonation has induced a strong decreased polymerization rate. In contrast, in the case of n‐butyl acrylate, the control over the polymerization is lost for the protonated pyridyl alkoxyamine because the pyridyl nitroxide is less thermally stable under its acidic form. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The ring‐opening metathesis polymerization (ROMP) of cis‐cyanocyclooct‐4‐ene initiated by ruthenium‐based catalysts of the first, second, and third generation was studied. For the polymerization with the second generation Grubbs catalyst [RuCl2(?CHPh)(H2IMes)(PCy3)] (H2IMes = N,N′‐bis(mesityl)‐4,5‐dihydroimidazol‐2‐ylidene), the critical monomer concentration at which polymerization occurs was determined, and variation of monomer to catalyst ratios was performed. For this catalyst, ROMP of cis‐cyanocyclooct‐4‐ene did not show the features of a living polymerization as Mn did not linearly increase with increasing monomer conversion. As a consequence of slow initiation rates and intramolecular polymer degradation, molar masses passed through a maximum during the course of the polymerization. With third generation ruthenium catalysts (which contain 3‐bromo or 2‐methylpyridine ligands), polymerization proceeded rapidly, and degradation reactions could not be observed. Contrary to ruthenium‐based catalysts of the second and third generation, a catalyst of the first generation was not able to polymerize cis‐cyanocyclooct‐4‐ene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The synthesis of two well‐defined 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide‐terminated poly(2‐methyl‐2‐oxazoline) with narrow dispersity (Mw/Mn = 1.1) has been achieved for the first time. The insertion of the alkoxyamine end groups at one or both ends of poly(2‐methyl‐2‐oxazoline) (PMEOX) chains has been successfully done using a method based on “terminating reagent method.” These macroinitiators have molecular weights ranging from 6.3 × 103 to 9.4 × 103 g mol?1. In contrast, attempt to introduce the alkoxyamine group at one end of PMEOX chain through the “initiator method” has furnished a mixture of alkoxyamine‐graft polyoxazolines because of rearrangement of alkoxyamine occurring during the synthesis of PMEOX. The macroinitiators obtained by terminating reagent method have been used successfully for polymerization of styrene by nitroxide‐mediated radical polymerization (NMP), which exhibited all the expected features of a controlled system. The control of NMP has been proved by a good agreement between theoretical and experimental molecular weights and by narrow dispersity (Mw/Mn < 1.2). Different types of well‐defined multiblock copolymers have been prepared: diblock copolymers poly[(2‐methyl‐2‐oxazoline)‐b‐(styrene)] (PMEOX‐b‐PS) and, for the first time, triblock copolymers poly[(styrene)‐b‐(2‐methyl‐2‐oxazoline)‐b‐(styrene)] (PS‐b‐PMEOX‐b‐PS). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
The macroinitiator of a copolymer (PMDBTM) of methyl methacrylate (MMA) and 2‐(dimethylamino)ethyl methacrylate (DAMA) with 4‐benzyloxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (BTEMPO) pendant groups was prepared by the photochemical reaction of tertiary amine groups of the copolymer with benzophenone in the presence of BTEMPO. The radical copolymerization of MMA and DAMA was carried out first with azo‐bis‐isobutyronitrile (AIBN) as an initiator; then, the dimethylamine groups of the copolymer constituted a charge‐transfer complex with benzophenone under UV irradiation, and the methylene of ternary amine and diphenyl methanol radicals were produced. The former was capped by BTEMPO, and the nitroxide (BTEMPO) was attached to the polymeric backbone. The amount of pendant BTEMPO on PMDBTM was measured by 1H NMR. PMDBTM initiated the graft polymerization of styrene via a controlled radical mechanism, and the molecular weight of the PMD‐g‐polystyrene increased with the polymerization time. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 604–612, 2001  相似文献   

20.
The bulk free‐radical polymerization of 2‐[(N,N‐dialkylamino)methyl]‐1,3‐butadiene with methyl, ethyl, and n‐propyl substituents was studied. The monomers were synthesized via substitution reactions of 2‐bromomethyl‐1,3‐butadiene with the corresponding dialkylamines. For each monomer the effects of the polymerization initiator, initiator concentration, and reaction temperature on the final polymer structure, molecular weight, and glass‐transition temperature (Tg) were examined. Using 2,2′‐azobisisobutyronitrile as the initiator at 75 °C, the resulting polymers displayed a majority of 1,4 microstructures. As the temperature was increased to 100 and 125 °C using t‐butylperacetate and t‐butylhydroperoxide, the percentage of the 3,4 microstructure increased. Differential scanning calorimetry indicated that all of the Tg values were lower than room temperature. The Tg values were higher when the majority of the polymer structure was 1,4 and decreased as the percentage of the 3,4 microstructure increased. The Diels–Alder side products found in the polymer samples were characterized using NMR and gas chromatography‐mass spectrometry methods. The polymerization temperature and initiator concentration were identified as the key factors that influenced the Diels–Alder dimer yield. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4070–4080, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号