首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A series of bioinspired poly(vinylbenzylthymine)-b-poly(vinylphenylsufonate) was synthesized and its core-shell thymine containing polymeric micelle system was prepared. The study of control release of riboflavin with micelles was examined by photometrical assay and demonstrated that the guest materials could be encapsulated by hydrogen bonding with the attached thymine in the core.  相似文献   

2.
Stable and aggregation‐free “gold nanoparticle–polymeric micelle” conjugates were prepared using a new and simple protocol enabled by the hydrogen bonding between surface‐capping ligands and polymeric micelles. Individual gold nanoparticles were initially capped using a phosphatidylthio–ethanol lipid and further conjugated with a star poly(styrene‐block‐glutamic acid) copolymer micelle using a one‐pot preparation method. The morphology and stability of these gold–polymer conjugates were characterized using transmission electron microscopy (TEM) and UV–vis spectroscopy. The self‐assembly of this class of polymer‐b‐polypeptide in aqueous an medium to form spherical micelles and further their intermicelle reorganization to form necklace‐like chains was also investigated. TEM and laser light scattering techniques were employed to study the morphology and size of these micelles. Polymeric micelles were formed with diameters in the range of 65–75 nm, and supermicellular patterns were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3570–3579, 2007  相似文献   

3.
A new type of poly(methyl acrylate)‐co‐(acrylic acid) (PMA‐AA) networks obtained by combining hydrogen bonding with controlled crosslinking exhibit full and rapid shape‐memory recovery. The structure, thermal properties, dynamical mechanical properties and shape‐memory effects of these networks were presented. High modulus ratios were achieved for the series of PMA‐AA networks based on intense self‐complementary hydrogen bonding in poly(acrylic acid) (PAA) segments. This lead to excellent shape‐memory effects with strain‐recovery ratio above 99%. Meanwhile, faster recovery speed was achieved by the synergistic effect of hydrogen bonding and controlled crosslinking compared to the linear PMA‐AA copolymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1241–1245, 2011  相似文献   

4.
Multistimuli‐responsive precise morphological control over self‐assembled polymers is of great importance for applications in nanoscience as drug delivery system. A novel pH, photoresponsive, and cyclodextrin‐responsive block copolymer were developed to investigate the reversible morphological transition from micelles to vesicles. The azobenzene‐containing block copolymer poly(ethylene oxide)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐6‐(4‐phenylazo phenoxy)hexyl methacrylate) [PEO‐b‐P(DEAEMA‐co‐PPHMA)] was synthesized by atom transfer radical polymerization. This system can self‐assemble into vesicles in aqueous solution at pH 8. On adjusting the solution pH to 3, there was a transition from vesicles to micelles. The same behavior, that is, transition from vesicles to micelles was also realizable on addition of β‐cyclodextrin (β‐CD) to the PEO‐b‐P(DEAEMA‐co‐PPHMA) solution at pH 8. Furthermore, after β‐CD was added, alternating irradiation of the solution with UV and visible light can also induce the reversible micelle‐to‐vesicle transition because of the photoinduced trans‐to‐cis isomerization of azobenzene units. The multistimuli‐responsive precise morphological changes were studied by laser light scattering, transmission electron microscopy, and UV–vis spectra. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Poly(pentafluorophenyl acrylate)‐block‐poly(N‐isopropylacrylamide) (PPFPA‐b‐PNIPAM) is synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Light‐responsive moieties of ortho‐nitrobenzyl (ONB)‐protected diamine are partially introduced to the PFPA moieties via postpolymerization modification. The amphiphilic block copolymers are assembled into micelles in water. The ONB‐protected diamine group in the micelle core is released upon UV irradiation, which subsequently induces an in situ cross‐linking by a spontaneous reaction with the remaining PFPA groups in the core and yields stable cross‐linked micelles. Micellization of the copolymers is confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). 4‐Nitro‐7‐piperazino‐2,1,3‐benzoxadiazole (NBD) and pyrene are loaded in the core of cross‐linked micelles to demonstrate the possibility for additional post‐functionalization of residual PFPA moieties and hydrophobic molecule encapsulation, respectively. It is anticipated that these micelles can be alternative cargos for incorporating active compounds that may be useful for advanced applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1103–1113  相似文献   

6.
Amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic poly(glycidyl methacrylate) (PGMA) block were synthesized through cationic ring‐opening polymerization with PEG as the precursor. The model reactions indicated that the reactivity of the epoxy groups was higher than that of the double bonds in the bifunctional monomer glycidyl methacrylate (GMA) under the cationic polymerization conditions. Through the control of the reaction time in the synthesis of block copolymer PEG‐b‐PGMA, a linear GMA block was obtained through the ring‐opening polymerization of epoxy groups, whereas the double bond in GMA remained unreacted. The results showed that the molecular weight of the PEG precursor had little influence on the grafting of GMA, and the PGMA blocks almost kept the same length, despite the difference of the PEG blocks. In addition, the PGMA blocks only consisted of several GMA units. The obtained amphiphilic PEG‐b‐PGMA block copolymers could form polymeric core–shell micelles by direct molecular self‐assembly in water. The crosslinking of the PGMA core of the PEG‐b‐PGMA micelles, induced by ultraviolet radiation and heat instead of crosslinking agents, greatly increased the stability of the micelles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2038–2047, 2005  相似文献   

7.
Our objective was to synthesize and evaluate lactic acid‐ and carbonate‐based biodegradable core‐ and core‐corona crosslinkable copolymers for anticancer drug delivery. Methoxy poly(ethylene glycol)‐b‐poly(carbonate‐co‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxane‐2‐one) [mPEG‐b‐P(CB‐co‐LA‐co‐MAC)] and methoxy poly(ethylene glycol)‐b‐poly(acryloyl carbonate)‐b‐poly(carbonate‐co‐lactide) [mPEG‐b‐PMAC‐b‐P(CB‐co‐LA)] copolymers were synthesized by ring‐opening polymerization of LA, CB, and MAC using mPEG as an macroinitiator and 1,8‐diazabicycloundec‐7‐ene as a catalyst. These amphiphilic copolymers which exhibited low polydispersity and critical micelle concentration values (0.8–1 mg/L) were used to prepare micelles with or without drug and stabilized by crosslinking via radical polymerization of double bonds introduced in the core and interface to improve stability. mPEG114b‐P(CB8co‐LA35co‐MAC2.5) had a higher drug encapsulation efficiency (78.72% ± 0.15%) compared to mPEG114b‐PMAC2.5b‐P(CB9co‐LA39) (20.29% ± 0.11%).1H NMR and IR spectroscopy confirmed successful crosslinking (~70%) while light scattering and transmission electron microscopy were used to determine micelle size and morphology. Crosslinked micelles demonstrated enhanced stability against extensive dilution with aqueous solvents and in the presence of physiological simulating serum concentration. Furthermore, bicalutamide‐loaded crosslinked micelles were more potent compared to non‐crosslinked micelles in inhibiting LNCaP cell proliferation irrespective of polymer type. Finally, these results suggest crosslinked micelles to be promising drug delivery vehicles for chemotherapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

9.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Aqueous reversible addition‐fragmentation chain transfer polymerization was used to synthesize poly(N‐[3‐(dimethylamino)propyl]acrylamide) (PDMAPA) cationic homopolymers and micelle‐forming, pH‐responsive, amphiphilic diblock copolymers of poly(sodium 2‐acrylamido‐2‐methyl‐1‐propanesulfonate‐blockN‐acryloyl‐L ‐alanine) (P(AMPS‐b‐AAL)). At low pH, the AAL blocks are protonated rendering them hydrophobic, whereas the AMPS blocks remain anionically charged because of the pendant sulfonate groups. Self‐assembly results in core–shell micelles consisting of hydrophobic cores of AAL and negatively charged shells of AMPS. Using solutions of these micelles with anionic coronas and of the cationic homopolymer PDMAPA, layer‐by‐layer (LbL) films were assembled at low pH, maintaining the micelle structures. Several block copolymers with varying AMPS and AAL block lengths were synthesized and used in the formation of LbL films. The thickness and morphology of the films were examined using ellipsometry and atomic force microscopy. The stimuli‐responsive behavior can be triggered by submersion of the film in water at neutral pH to disrupt the micelles. This behavior was monitored by observing the decrease in film thickness and alteration of the film morphology. The micelles were also loaded with a model hydrophobic compound, pyrene, and incorporated into LbL films. The release of pyrene from the films was monitored by fluorescence spectroscopy at varying pH values (1, 3, 5, and 7). As the pH of the solution increases, the rate of release increases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Star‐shaped amphiphilic poly(ε‐caprolactone)‐block‐poly(oligo(ethylene glycol) methyl ether methacrylate) with porphyrin core (SPPCL‐b‐POEGMA) was synthesized by combination of ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Star‐shaped PCL with porphyrin core (SPPCL) was prepared by bulk polymerization of ε‐caprolactone (CL) with tetrahydroxyethyl‐terminated porphyrin initiator and tin 2‐ethylexanote (Sn(Oct)2) catalyst. SPPCL was converted into SPPCLBr macroinitiator with 2‐bromoisobutyryl bromide. Star‐shaped SPPCL‐b‐POEGMA was obtained via ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). SPPCL‐b‐POEGMA can easily self‐assemble into micelles in aqueous solution via dialysis method. The formation of micellar aggregates were confirmed by critical micelle formation concentration, dynamic light scattering, and transmission electron microscopy. The micelles also exhibit property of temperature‐induced drug release and the lower critical solution temperature (LCST) was 60.6 °C. Furthermore, SPPCL‐b‐POEGMA micelles can reversibly swell and shrink in response to external temperature. In addition, SPPCL‐b‐POEGMA can present obvious fluorescence. Finally, the controlled drug release of copolymer micelles can be achieved by the change of temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006  相似文献   

13.
Double hydrophilic diblock copolymer, poly(N,N‐dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide‐co‐3‐azidopropylacrylamide) (PDMA‐b‐P(NIPAM‐co‐AzPAM), containing azide moieties in one of the blocks was synthesized via consecutive reversible addition‐fragmentation chain transfer polymerization. The obtained diblock copolymer molecularly dissolves in aqueous solution at room temperature, and can further supramolecularly self‐assemble into core‐shell nanoparticles consisting of thermoresponsive P(NIPAM‐co‐AzPAM) cores and water‐soluble PDMA coronas above the lower critical solution temperature of P(NIPAM‐co‐AzPAM) block. As the micelle cores contain reactive azide residues, core crosslinking can be facilely achieved upon addition of difunctional propargyl ether via click chemistry. In an alternate approach in which the PDMA‐b‐P(NIPAM‐co‐AzPAM) diblock copolymer was dissolved in a common organic solvent (DMF), the core‐crosslinked (CCL) micelles can be fabricated via “click” crosslinking upon addition of propargyl ether and subsequent dialysis against water. CCL micelles prepared by the latter approach typically possess larger sizes and broader size distributions, compared with that obtained by the former one. In both cases, the obtained (CCL) micelles possess thermoresponsive cores, and the swelling/shrinking of which can be finely tuned with temperature, rendering them as excellent candidates as intelligent drug nanocarriers. Because of the high efficiency and quite mild conditions of click reactions, we expect that this strategy can be generalized for the structural fixation of other self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 860–871, 2008  相似文献   

14.
A method was developed to enable the formation of nanoparticles by reversible addition–fragmentation chain transfer polymerization. The thermoresponsive behavior of polymeric micelles was modified by means of micellar inner cores and an outer shell. Polymeric micelles comprising AB block copolymers of poly(N‐isopropylacrylamide) (PIPAAm) and poly(2‐hydroxyethylacrylate) (PHEA) or polystyrene (PSt) were prepared. PIPAAm‐b‐PHEA and PIPAAm‐b‐PSt block copolymers formed a core–shell micellar structure after the dialysis of the block copolymer solutions in organic solvents against water at 20 °C. Upon heating above the lower critical solution temperature (LCST), PIPAAm‐b‐PHEA micelles exhibited an abrupt increase in polarity and an abrupt decrease in rigidity sensed by pyrene. In contrast, PIPAAm‐b‐PSt micelles maintained constant values with lower polarity and higher rigidity than those of PIPAAm‐b‐PHEA micelles over the temperature range of 20–40 °C. Structural deformations produced by the change in the outer polymer shell with temperature cycles through the LCST were proposed for the PHEA core, which possessed a lower glass‐transition temperature (ca. 20 °C) than the LCST of the PIPAAm outer shell (ca. 32.5 °C), whereas the PSt core with a much higher glass‐transition temperature (ca. 100 °C) retained its structure. The nature of the hydrophobic segments composing the micelle inner core offered an important control point for thermoresponsive drug release and the drug activity of the thermoresponsive polymeric micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3312–3320, 2006  相似文献   

15.
In this study, a novel type of amphiphilic block copolymers poly(lactic acid)‐block‐poly(ascorbyl acrylate) (PLA‐block‐PAAA) with biodegradable poly(lactic acid) as hydrophobic block and poly(ascorbyl acrylate) (PAAA) as hydrophilic block was successfully developed by a combination of ring‐opening polymerization and atom transfer radical polymerization, followed by hydrogenation under normal pressure. The chemical structures of the desired copolymers were characterized by 1H NMR and gel permeation chromatography. The thermal physical properties and crystallinity were investigated by thermogravimetric analysis, differential scanning calorimetry, and wide angle X‐ray diffraction, respectively. Their self‐assembly behavior was monitored by fluorescence‐probe technique and turbidity change using UV–vis spectrometer, and the morphology and size of the nanocarriers via self‐assembly were detected by cryo‐transmission electron microscopy and dynamic light scattering. These polymeric micelles with PAAA shell extending into the aqueous solution have potential abilities to act as promising nanovehicles for targeting drug delivery. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Fluorinated polymer particles with grafting sulfonate chains, which showed high dispersion stability in aqueous media, were synthesized by the crosslinking of block copolymer micelles. A crosslinkable block copolymer, poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene]‐b‐poly(neopentyl 4‐styrenesulfonate), composed of a statistical copolymer segment of 2,3,4,5,6‐pentafluorostyrene with 4‐(1‐methylsilacyclobutyl)styrene and a neopentyl 4‐styrenesulfonate segment, was prepared by the nitroxy‐mediated living radical polymerization of a 2,3,4,5,6‐pentafluorostyrene/4‐(1‐methylsilacyclobutyl)styrene mixture and neopentyl 4‐styrenesulfonate. The block copolymer formed micelles with a poly[(2,3,4,5,6‐pentafluorostyrene)‐co‐4‐(1‐methylsilacyclobutyl)styrene] core in acetonitrile, which were crosslinked via the ring‐opening reaction of silacyclobutyl groups in the core by a treatment with a platinum catalyst. The deprotection of sulfonate groups in the micelle corona by exposure to trimethylsilyl iodide and a treatment with aqueous HCl, followed by neutralization with aqueous NaOH, provided a polymer particle with polymer chains of sodium 4‐styrenesulfonate grafted on its surface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1316–1323, 2007  相似文献   

17.
New micelle‐like organic supports for single site catalysts based on the self‐assembly of polystyrene‐b‐poly(4‐vinylbenzoic acid) block copolymers have been designed. These block copolymers were synthesized by sequential atom transfer radical polymerization (ATRP) of styrene and methyl 4‐vinylbenzoate, followed by hydrolysis. As evidenced by dynamic light scattering, self‐assembly in toluene that is a selective solvent of polystyrene, induced the formation of micelle‐like nanoparticles composed of a poly(4‐vinylbenzoic acid) core and a polystyrene corona. Further addition of trimethylaluminium (TMA) afforded in situ MAO‐like species by diffusion of TMA into the core of the micelles and its subsequent reaction with the benzoic acid groups. Such reactive micelles then served as nanoreactors, MAO‐like species being efficient activators of 2,6‐bis[1‐{(2,6‐diisopropylphenyl)imino}ethyl]pyridinyl iron toward ethylene polymerization. These new micelle‐like organic supports enabled the production of polyethylene beads with a spherical morphology and a high bulk density through homogeneous‐like catalysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 197–209, 2009  相似文献   

18.
Well‐defined heterotelechelic poly(styrene) carrying thymine/diaminopyridine (DAP) (Mn,SEC = 9300, PDI = 1.04) and Hamilton wedge (HW)/cyanuric acid (CA) (Mn,SEC = 8200, PDI = 1.04) bonding motifs are prepared via a combination of controlled/living radical polymerization and copper catalyzed azide/alkyne “click” chemistry and are subsequently self‐assembled as single chains to emulate—on a simple level—the self‐folding behavior of natural biomacromolecules. Hydrogen nuclear magnetic resonance (1H NMR) in deuterated dichloromethane and dynamic light scattering analyses provides evidence for the hydrogen bonding interactions between the α‐thymine and ω‐DAP as well as α‐CA and ω‐HW chain ends of the heterotelechelic polymers leading to circular entropy driven single chain self‐assembly. This study demonstrates that the choice of NMR solvent is important for obtaining well‐resolved NMR spectra of the self‐assembled structures. In addition, steric effects on the HW can affect the efficiency of the self‐assembly process. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Photoresponsive amphiphilic diblock poly(carbonate)s mPEG113‐b‐PMNCn with pendent o‐nitrobenzyl ester group were synthesized through ring‐opening polymerization (ROP) using 1,8‐diazabi‐cyclo[5.4.0]undec‐7‐ene (DBU) as catalyst and monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. In aqueous solution, the copolymers can self‐assemble to spherical micelles with a PC core and a PEG shell. The critical micelle concentration (CMC), size, and morphology of the micelles were demonstrated by means of fluorescence spectroscopy, transmission electron microscopes (TEM), and dynamic light scattering (DLS). Under UV light irradiation, the amphiphilic copolymer micelles disassembled because of the photocleavage of o‐NB ester, and the light‐controlled release behaviors of payload Nile red were further proved. This study provides a convenient way to construct smart poly(carbonate)s nanocarriers for controlled drug release. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2770–2780  相似文献   

20.
Summary: Self‐association behaviors of poly(γ‐benzyl L ‐glutamate)‐graft‐poly(ethylene glycol) (PBLG‐graft‐PEG) and its mixtures with PBLG homopolymer in aqueous media were investigated by fluorescence spectroscopy, transmission electron microscopy (TEM), and nuclear magnetic resonance (NMR) spectroscopy. It was revealed that PBLG‐graft‐PEG could self‐assemble to form polymeric micelles with a core‐shell structure in the shape of spindle. The introduction of PBLG homopolymer not only decreases the critical micelle concentration, but also changes the morphology of the micelles.

The excitation fluorescence spectra of pyrene as a function of concentrations for the mixture of PBLG‐graft‐PEG with PBLG and a TEM image of the formed micelles.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号