首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Uniaxially orienred semicrystalline poly(ethylene terephthalate) (PET) and poly(propylene) (PP) films were loaded parallel to draw direction at various temperatures. Changes in the submicroscopical structure of the films under load were examined by small and wide-angle x-ray scattering (SAXS; WAXS) and birefringence measurements. WAXS measurements reveal a decrease of the initial high orientation of the chains in the crystallites during deformation. Simultaneously, an increase of the birefringence was detected, indicating an orientation of chains in the amorphous regions. The alteration of the long period reflections in the SAXS patterns give strong evidence that lamellar stacks with different orientation angles according to load direction are present. Depending on the orientation of stacks, the contribution of lamellar separation to sample deformation alters, giving rise to different amounts of density changes in the stacks. Absolute intensity measurements of SAXS using a Kratky apparatus reveal that lamellar separation occurs preferentially below or in the range of the glass-transition temperature at small strain. With increasing strain and temperatures above the glass-transition slip deformation mechanisms become more important. The formation of microvoids was observed at strain near to elongation at break below or in the range of glass-transition temperature.  相似文献   

2.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   

3.
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X‐ray scattering (SAXS) and wide angle X‐ray scattering (WAXS) measurements. SAXS and WAXS patterns of high‐density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 °C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

4.
Small‐angle X‐ray scattering (SAXS), atomic force microscopy (AFM), and other techniques were combined in a study of segmented thermoplastic elastomers (Pebax) containing poly(tetramethylene oxide) soft segments and hard blocks of nylon‐12. AFM was used to provide real‐space resolution of the morphology during tensile elongation and after subsequent relaxation. Nanofibril formation, starting at strains of about 1.5×, was characterized in detail, showing the evolution of the number, orientation, and size of these highly stressed load‐bearing fibrils that dominated the mechanical properties. AFM results were combined with two‐dimensional SAXS data to develop a model considering the breakup of the original ribbonlike nylon‐12 lamellae in combination with progressive reformation and orientation of highly stressed fibrils. The complex changes in the two‐dimensional SAXS images included a distorted arc pattern due to increased spacing of the lamellae in the stretch direction at low strains, with an evolution to completely different patterns dominated mainly by intrafibrillar and interfibrillar scattering contributions. Between stretch ratios of 1.5 and 2.3× original lamellae were progressively broken up, and by 3.2×, all lamellae independent of the initial orientation were broken into smaller crystals with low aspect ratios. The results were combined with differential scanning calorimetry and birefringence data taken on films under strain to obtain insight into the microscopic basis for strain softening and plastic deformation in Pebax and related segmented polymers. Birefringence cycling with strain provided a consistent picture with the other techniques for understanding the redistribution of stress on a nanoscopic scale during deformation and relaxation. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1727–1740, 2002  相似文献   

5.
Morphological changes accompanying the deformation of polypropylene filaments with varying degrees of melt-induced orientation are examined using wide-angle x-ray scattering (WAXS), small-angle x-ray scattering (SAXS), and electron microscopy, and their behavior is compared both to completely unoriented film samples and to very highly oriented, hard elastic filaments. Melt-oriented filaments are shown to deform predominantly by a voiding mechanism at low temperatures (<100°C), and destruction of the lamellas to produce fibrils occurs only after extensive drawing. The bimodal crystal texture of the filaments does not appear to greatly affect the low temperature deformation mechanism. High temperature (>100°C) drawing produces a fibrillar structure containing elongated voids.  相似文献   

6.
The morphologies of a series of blown films and machine‐direction‐oriented (MDO) films, all produced from high density polyethylene, were characterized. In the blown film process, the crystalline morphology develops while the melt is under extensional stress. In the MDO process, drawing takes place in the solid state and deforms the crystalline morphology of the starting film. The films were characterized by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) and atomic force microscopy to determine the lamellar morphology. The effect of the type of deformation on the lamellar morphology was studied and relationships were developed between the lamellar and polymer chain morphology using SAXS and WAXS. Blown and MDO films were found to have very different morphologies. However, an integrated mechanism was developed linking the sequential events in the deformation and morphology development in blown and MDO films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1834–1844, 2007  相似文献   

7.
The true electric actuation thickness strain of poly (styrene‐b‐ethylbutylene‐b‐styrene) (SEBS) gel was measured using an in situ synchrotron SAXS. The thermoplastic elastomer SEBS gel was microphase‐separated to form a disordered styrene micelle nanostructure in an oil‐swollen ethylbutylene matrix. The SEBS gel showed reversible cyclic load–unload compression behavior without permanent residual strain. The electromechanical strain of the SEBS gel with carbon paste electrodes could be evaluated by means of a nanostructure dimensional change traced by using the in situ synchrotron SAXS during actuation. The strain measured with SAXS was compared with the strain measured using conventional laser displacement sensor systems. The optical laser sensor method was likely to overestimate the thickness strain due to the bending movement of the dielectric elastomer. To our knowledge, the thickness strain value measured by the synchrotron SAXS is the closest to the true strain ever measured in the field of dielectric elastomer studies, because the nanostructure dimensional change depends on the thickness dimension change, not on the translational movement like the bending motion. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

8.
A series of amphiphilic graft copolymers consisting of poly(vinyl chloride) (PVC) main chains and poly(vinyl pyrrolidone) (PVP) side chains, i.e. PVC‐g‐PVP, was synthesized via atom transfer radical polymerization (ATRP), as confirmed by 1H NMR, FT‐IR spectroscopy, and gel permeation chromatography (GPC). Transmission electron microscope (TEM) and small angle X‐ray scattering (SAXS) analysis revealed the microphase‐separated structure of PVC‐g‐PVP and the domain spacing increased from 21.4 to 23.9 nm with increasing grafting degree. All the membranes exhibited completely amorphous structure and high Young's modulus and tensile strength, as revealed by wide angle X‐ray scattering (WAXS) and universal testing machine (UTM). Permeation experimental results using a CO2/N2 (50/50) mixture indicated that as an amount of PVP in a copolymer increased, CO2 permeability increased without the sacrifice of selectivity. For example, the CO2 permeability of PVC‐g‐PVP with 36 wt% of PVP at 35°C was about four times higher than that of the pristine PVC membrane. This improvement resulted from the increase of diffusivity due to the disruption of chain packing in PVC by the grafting of PVP, as confirmed by WAXS analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Deformation behavior of the segmented block copolymers was studied with synchrotron small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR) methods. Polyurethanes used in this work consist of 4,4′-methylene-bis(phenyl isocyanate) and butanediol as a hard segment, and poly(tetramethylene oxide) of various molecular weights as a soft segment. As expected, the deformation of the domain structure that is macroscopically isotropic before the drawing was anisotropic. Depending on the initial orientation of the hard domains, the deformation behavior was observed to be characteristically different. Whereas the hard domains oriented along the deformation direction underwent the extension of the domain separation distance at the low draw ratio, the perpendicular ones showed the shear compression. Further drawing was found to cause the breakup of the hard domains, followed by the formation of fibril structure oriented along the deformation direction. Based on SAXS and FTIR results, a model is proposed to explain the deformation behavior of the various domains and segments of the segmented block copolymers. By quantitatively analyzing the conformation of the soft segment during the deformation process, the model proposed has been consolidated. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3233–3245, 1999  相似文献   

10.
A thermodynamic analysis of the uniaxial stretching of polyurethanes of various compositions and mechanical histories was carried out by using deformation calorimetry. The initial small strain deformations were found to result from the volume elasticity of the hard phase. The intramolecular energy contributions of the soft blocks were estimated. The hard block contributions were shown to depend on their content and on the degree of sample stretching. The predominant role of the soft component is proved to be manifested only in softened samples with a hard block content not exceeding 30%. The thermodynamics of the softening and hysteresis phenomena were studied. The dependence of the deformation mechanism on the hard block content and mechanical history is discussed.The authors express their thanks to Dr. A. R. Korigodsky and Dr. M. P. Letunovsky for the PU samples.  相似文献   

11.
An x-ray study has been made of the structure of a series of ethylene–phosphonic acid copolymers and the parent low-density polyethylene from which they were derived. The phosphonic acid contents (groups per 100 carbon atoms) of the copolymers were: A, 0.8; B, 1.8; C, 2.8; and D, 8.0. Small-angle x-ray scattering (SAXS) results show that the phosphonic acid substituents do not incorporate into the crystal lattice to any appreciable extent, that the substituents have the effect of decreasing the average thickness of the crystal lamellae and increasing the breadth of the size distribution of thicknesses, and that a two-phase model does not adequately account for the observed SAXS invariant. Wide-angle x-ray scattering (WAXS) results show that specimens, A, B, and C are partially crystalline with the polyethylene crystal structure and that D is amorphous. The observed broadenings of the 110 and 200 crystal reflections in the copolymers indicate that the substituents decrease the lateral dimensions of the crystalline lamellae and/or increase the deformation of the lattice due to external strain. Specimen D, completely amorphous according to the WAXS criterion, exhibits the largest value of the SAXS invariant of all the copolymers studied and must thus possess a multiphase structure consisting of small ordered regions and a disordered phase. The results of the study show the structure of the copolymers to be consistent with the fringe-micelle model but do not rule out the folded-chain model, although a regular fold surface is unlikely.  相似文献   

12.
In a previous study, the morphologies of a group of paraphenylene diisocyanate (PPDI)-based polyurethane block copolymers were examined. These polyurethanes exhibited a multiphase structure with an interfacial boundary thickness estimated to be on the order of 1 nm and crystallization of the polyoxytetramethylene (POTM) flexible segment. Further studies involving annealing of these polyurethanes are reported here. An annealing time of 4 h was used, and the annealing temperature varied from 125 to 200°C. The samples have been characterized using differential scanning calorimetry (DSC) and with wide- and small-angle x-ray scattering (WAXS, SAXS) in order to determine the effects of annealing on the microphase structure. Annealing increases the phase separation of the two phases as evidenced by sharper endotherms in DSC thermograms and increased intensities in WAXS diffractometer traces. Annealing also slightly increases the transition zone thickness and long-period spacing. At the highest annealing temperature in this study, the long-period spacing increases dramatically due to hard segment domain aggregation.  相似文献   

13.
The microphase structure of a series of polystyrene‐b‐polyethylene oxide‐b‐polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid‐state NMR, DSC, wide and small angle X‐ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene‐oxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and 1H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 55–64, 2010  相似文献   

14.
15.
Synchrotron small angle X‐ray scattering (SAXS), wide angle X‐ray scattering (WAXS), and transmission electron microscopy were carried out for an oriented polyethylene‐block‐[atactic poly(propylene)] with a molecular weight of 1.13×105 and a volume fraction of polyethylene of 0.5. Isothermal crystallization at 93°C did not destroy the pre‐formed microdomain, however, with a higher crystallization temperature, the microdomain was more heavily deformed and more crystalline lamella grew. In WAXS profiles, preferential orientation of (020) reflection peak was observed, indicating that the crystalline lamella grew in parallel with the micro domain interface.  相似文献   

16.
Summary: The annealing and melting behavior of poly[(R)‐3‐hydroxybutyrate] (P(3HB)) single crystals were followed in real time by synchrotron small‐ (SAXS) and wide‐angle X‐ray scattering (WAXS) measurements. The real‐time SAXS measurements revealed that the P(3HB) single crystal exhibits a discontinuous increase of lamellar thickness during heating. The structural changes as observed by SAXS and WAXS were in response to the thermal properties of single crystals characterized by differential scanning calorimetry.

A series of two‐dimensional small‐angle X‐ray scattering patterns of P(3HB) single crystal mats during the lamellar thickening process.  相似文献   


17.
用小角/广角X射线散射(SAXS/WAXS)联用的实验方法考察了等温结晶温度(Tc)和等温时间对聚(ε-己内酯)(PCL)片晶形态的影响.根据WAXS数据计算了PCL的重量结晶度,进而求得其体积结晶度Vc(WAXS).在不同Tc下结晶的PCL样品的Vc(WAXS)均略高于50%.对SAXS谱线做一维相关函数(1DCF)分析,得到了PCL的片晶长周期(LP)和无定形层厚度(La).通过比较WAXS及SAXS的数据分析结果,认为PCL晶体需用"三相模型"予以描述,其过渡层厚度(E)约为LP的15%~18%,对片晶形态具有重要影响.随着Tc升高,PCL晶体的Lc、La及E均逐渐增大,但Lc的变化率最大,这使得结晶度上升.在50℃等温结晶不同时间,发现Lc随延长时间显著增加,而La及E则不断减小.等温10天后,PCL晶体的SAXS谱线上可观察到5级散射,表明片晶相当完善.  相似文献   

18.
The glass transition and melting behavior of poly(ether-ester) multiblock copolymers with poly(tetramethylene isophthalate) (PTMI) hard segments and poly(tetramethylene oxide) (PTMO) soft segments are studied by differential scanning calorimetry (DSC) and small- and wide-angle x-ray scattering (SAXS and WAXS). Thermodynamic melting parameters for the PTMI homopolymer are estimated by WAXS and from the dependence of melting point on crystallization temperature. The melting behavior of PTMI is characterized by dual endotherms which are qualitatively representative of the original morphology, although reorganization effects are present. The composition dependence of the glass transition temperature parameters after rapid quenching from the melt are well described by mixed phase correlations for copolymers in the range 30-100 wt% hard segment. Combined with SAXS characterization at melt temperatures, a single phase melt is suggested in these materials which extends to temperatures below the hard segment melting point. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Time-resolved and off-line synchrotron wide-angle and small-angle x-ray scattering (WAXS and SAXS) was used to study the structure formation in poly-p-phenylenebenzobisoxazole (PBO) fibers during various stages of spinning, coagulation, and heating processes. WAXS data could be explained in terms of liquid-crystalline structures of varying degrees of order. A structure model is proposed that is in accordance with the observed SAXS four-point pattern.  相似文献   

20.
The structural evolution of fluoroelastomer F2314 is studied during uniaxial tensile in a large strain rate range (0.1–150 s?1) with the combination of a homemade high‐speed stretching device and in situ small‐ and wide‐angle X‐ray scattering techniques. Based on the mechanical behaviors and structural evolutions, three strain rate regions (I–III) are defined. The microphase‐separated structure plays an important role in the mechanical response of F2314. In Region I, deformation of soft domains is the main process before yielding, accompanied by the destruction of lamellar crystals in hard domains. In the stress plateau zone, deformation of hard domains is confirmed as the primary mechanism of energy dissipation. With the orientation parameter of the amorphous phase reaching a critical value, strain hardening is triggered. Recrystallization also takes place in strain hardening zone. In Region II, due to the mismatch between the mobility of molecular chains in hard domains and the acting time of stress, large deformation of hard domains is more and more difficult to occur with the disappearance of recrystallization. In Region III, as almost all molecular chains have no time to adjust or relax to fit the stress field, the sample presents a brittle fracture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 607–620  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号