首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
用密度泛函理论和DMol3程序包对锐钛矿型TiO2(101)表面复合三(8-羟基喹啉-5-羧酸)铁的敏化机理进行了研究. 计算结果表明, 该染料敏化剂经式结构的HOMO(最高占据分子轨道)-LUMO(最低未占据分子轨道)能隙非常小, 很容易受到激发; TiO2纳米晶吸附染料后, HOMO、LUMO 和费米能级都升高, 导致吸附染料后开路电压VOC升高. 并进一步探讨了三(8-羟基喹啉-5-羧酸)铁在TiO2(101)表面复合过程及作用机理.  相似文献   

2.
The initial molecular structure of 2,2′‐bis(4‐trifluoromethylphenyl)‐ 5,5′‐bithiazole has been optimized in the ground state using density functional theory (DFT). The distribution patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) have also been evaluated. To shed light on the charge transfer properties, we have calculated the reorganization energy of electron λe, the reorganization energy of hole λh, adiabatic electron affinity (EAa), vertical electron affinity (EAv), adiabatic ionization potential (IPa), and vertical ionization potential (IPv) using DFT. Based on the evaluation of hole reorganization energy, λh, and electron reorganization energy, λe, it has been predicted that 2,2′‐bis(4‐trifluoromethylphenyl)‐5,5′‐bithiazole would be a better electron transport material. Finally, the effect of electric field on the HOMO, LUMO, and HOMO–LUMO gap were observed to check its suitability for the use as a conducting channel in organic field‐effect transistors. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We present an analysis of the electronic structure of C60 adsorbed on a vicinal Au(111) surface at different fullerene coverages using photoemission, x-ray absorption, and scanning tunneling microscopy/spectroscopy (STS). STS provides a straightforward determination of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels with respect to the Fermi energy. At C60 coverages of 0.5 and 1 ML a 2.7 eV wide HOMO-LUMO gap is found. The near-edge x-ray absorption fine structure (NEXAFS) spectrum for the 0.5 ML C60 nanomesh structure displays a significant intensity at the low energy side of the LUMO exciton peak, which is explained as due to absorption into HOMO-LUMO gap states localized at individual C60 cluster edges. From 0.5 to 1 ML we observe a rigid shift of the HOMO-LUMO peaks in the STS spectra and an almost complete quenching of the gap states feature in NEXAFS.  相似文献   

4.
Arylenevinylene‐based π‐conjugated polymers containing imidazolium cationic units in the main chain and their model compounds were synthesized and characterized in terms of optical and electrochemical properties. 9,9‐Bisoctylfluorene, 2,5‐bisdodecyloxybenzene, and 3‐dodecylthiophene were introduced as arylene units with different donor characteristics to evaluate the effect on the highest occupied molecular orbital‐lowest unoccupied molecular orbital (HOMO‐LUMO) gap energy. The UV–vis and fluorescence spectra of cationic polymers and model compounds with iodide counter anion exhibited a significant blue shift with respect to the parent neutral molecules. X‐ray single crystal analysis for model compounds revealed that the effective π‐conjugation length of cationic model compounds decreased compared to the neutral model compounds by means of twisted conformation directed by CH‐π interactions between N‐methyl groups of imidazolium and neighboring aryl units. The cyclic voltammetry measurement suggested the negative shift of LUMO levels by the conversion of imidazole to imidazolium, indicating the electron‐accepting characteristics of cationic imidazolium unit. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
A series of N‐methyl‐3,4‐fulleropyrrolidine (NMFP) derivatives were designed by selecting different π‐conjugated linkers and electron‐donating groups as D‐π‐A and D‐A systems. The optimised structures and photo‐physical properties of NMFP and its derivatives have been determined using density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods with the B3LYP functional and the 6‐31G basis set. According to the computation analysis, both the π‐conjugated linkers and the electron‐donating groups can influence the electronic and photo‐physical properties of the NMFP derivatives. Our calculated results demonstrated that the electron‐donating groups, with significant electron‐donating ability, had the tendency to increase the highest occupied molecular orbital (HOMO) energy. The π‐conjugated linkers with lower resonance energy decreased the lowest occupied molecular orbital (LUMO) energy and caused a significant decrease in the energy gap (Eg) between the EHOMO and ELUMO. A Natural Bond Orbital (NBO) analysis examines the effect of the electron‐donating group, π conjugated linker, and electron‐withdrawing group for these NMFP derivatives. For the NMFP derivatives, a projected density of state (PDOS) analysis demonstrated that the electron density of HOMO and LUMO are concentrated on the electron‐donating group and the π‐conjugated linker, respectively. A TD‐DFT/B3LYP calculation was performed to calculate the electronic absorption spectra of these NMFP derivatives. Both the electron‐donating group and the π‐conjugated linker contribute to the major absorption peaks, which are assigned as HOMO to LUMO transitions and are red‐shifted relative to those of non‐substituted NMFP.  相似文献   

6.
Azulene (Az) is a non‐alternating, aromatic hydrocarbon composed of a five‐membered, electron‐rich and a seven‐membered, electron‐poor ring; an electron distribution that provides intrinsic redox activity. By varying the attachment points of the two electrode‐bridging substituents to the Az center, the influence of the redox functionality on charge transport is evaluated. The conductance of the 1,3 Az derivative is at least one order of magnitude lower than those of the 2,6 Az and 4,7 Az derivatives, in agreement with density functional theory (DFT) calculations. In addition, only 1,3 Az exhibits pronounced nonlinear current–voltage characteristics with hysteresis, indicating a bias‐dependent conductance switching. DFT identifies the LUMO to be nearest to the Fermi energy of the electrodes, but to be an active transport channel only in the case of the 2,6 and the 4,7 Az derivatives, whereas the 1,3 Az derivative uses the HOMO at low and the LUMO+1 at high bias. In return, the localized, weakly coupled LUMO of 1,3 Az creates a slow electron‐hopping channel responsible for the voltage‐induced switching due to the occupation of a single molecular orbital (MO).  相似文献   

7.
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.  相似文献   

8.
The key parameters of conjugated polymers are lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Few approaches can simultaneously lower LUMO and HOMO energy levels of conjugated polymers to a large extent (>0.5 eV). Disclosed herein is a novel strategy to decrease both LUMO and HOMO energy levels of conjugated polymers by about 0.6 eV through replacement of a C? C unit by a B←N unit. The replacement makes the resulting polymer transform from an electron donor into an electron acceptor, and is proven by fluorescence quenching experiments and the photovoltaic response. This work not only provides an effective approach to tune the LUMO/HOMO energy levels of conjugated polymers, but also uses organic boron chemistry as a new toolbox to develop conjugated polymers with high electron affinity for polymer optoelectronic devices.  相似文献   

9.
Electron‐donating molecules play an important role in the development of organic solar cells. (Z )‐2‐(2‐Phenylhydrazinylidene)acenaphthen‐1(2H )‐one (PDAK), C18H12N2O, was synthesized by a Schiff base reaction. The crystal structure shows that the molecules are planar and are linked together forming `face‐to‐face' assemblies held together by intermolecular C—H…O, π–π and C—H…π interactions. PDAK exhibits a broadband UV–Vis absorption (200–648 nm) and a low HOMO–LUMO energy gap (1.91 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital), while fluorescence quenching experiments provide evidence for electron transfer from the excited state of PDAK to C60. This suggests that the title molecule may be a suitable donor for use in organic solar cells.  相似文献   

10.
The possibility of quantitative reaction analysis on the orbital energies of long‐range corrected density functional theory (LC‐DFT) is presented. First, we calculated the Diels–Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long‐range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long‐range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels–Alder reactions quantitatively. After confirming that LC‐DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels–Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels–Alder reactions were computed. We noticed that LC‐DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO‐LUMO gap variations are close to the reaction enthalpies for these Diels–Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
A dendritic monomer with bipolar side groups containing dendritic carbazole and oxadiazole structures was synthesized by a convergent strategy. The homopolymer was synthesized through a conventional radical polymerization. The number‐average molecular weight determined by gel permeation chromatography was 40,000 g/mol. Its 5% weight loss temperature was 358 °C. Its photophysical properties were studied in solution and in film. The photoluminescent emission peak of the film was at 408 nm, which had a blue shift of 9 nm compared with that of the tetrahydrofuran solution. And there was an energy transfer from oxadiazole to carbazole. The highest occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) levels calculated from cyclic voltammetry data were ‐5.55 and ‐2.52 eV, respectively, and the band gap was 3.03 eV, which suggested that the polymer had both hole‐ and electron‐transporting capabilities. The efficiencies of the single‐layer device based on this homopolymer were much higher than those of the same‐generation homopolymer without the oxadiazole moiety. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   

13.
We have investigated the electronic structure and transport properties of a pi-stacking molecular chain which is covalently bonded to a H/Si(100) surface, using the first-principles density functional theory approach combined with Green's function method. The highest occupied molecular orbital (HOMO) dispersion is remarkably reduced, but remains noticeable ( approximately 0.1 eV), when a short pi-stacking styrene wire is cut from an infinitely long wire and sandwiched between metal electrodes. We find that the styrene chain's HOMO and lowest unoccupied molecular orbital (LUMO) states are not separated from Si, indicating that it does not work as a wire. By substituting -NO2 or -NH2 for the top -H of styrene, we are able to shift the position of the HOMO and LUMO with respect to the Fermi level. More importantly, we find that the HOMO of styrene-NH2 falls into the band gap of the substrate and is localized in the pi-stacking chain, which is what we need for a wire to be electrically separated from the substrate. The conductance of such an assembly is comparable to that of Au/benzene dithiolate/Au wire based on chemical bonding, and its tunability makes it a promising system for a molecular device.  相似文献   

14.
In this article, we show that the long‐range‐corrected (LC) density functionals LC‐BOP and LCgau‐BOP reproduce frontier orbital energies and highest‐occupied molecular orbital (HOMO)—lowest‐unoccupied molecular orbital (LUMO) gaps better than other density functionals. The negative of HOMO and LUMO energies are compared with the vertical ionization potentials (IPs) and electron affinities, respectively, using CCSD(T)/6‐311++G(3df,3pd) for 113 molecules, and we found LC functionals to satisfy Koopmans' theorem. We also report that the frontier orbital energies and the HOMO‐LUMO gaps of LC‐BOP and LCgau‐BOP are better than those of recently proposed ωM05‐D (Lin et al., J. Chem. Phys. 2012, 136 , 154109). We express the exact IP in terms of orbital relaxation, and correlation energies and hence calculate the relaxation and correlation energies for the same set of molecules. It is found that the LC functionals, in general, includes more relaxation effect than Hartree–Fock and more correlation effect than the other density functionals without LC scheme. Finally, we scan μ parameter in LC scheme from 0.1 to 0.6 bohr?1 for the above test set molecules with LC‐BOP functional and found our parameter value, 0.47 bohr?1, is usefully applicable to our tested systems. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
We study computationally the electron transport properties of dithiocarboxylate terminated molecular junctions. Transport properties are computed self-consistently within density functional theory and nonequilibrium Green's functions formalism. A microscopic origin of the experimentally observed current amplification by dithiocarboxylate anchoring groups is established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find that the interaction of the lowest unoccupied molecular orbital (LUMO) of the dithiocarboxylate anchoring group with LUMO and highest occupied molecular orbital (HOMO) of the biphenyl part results in bonding and antibonding resonances in the transmission spectrum in the vicinity of the electrode Fermi energy. A new microscopic mechanism of rectification is predicted based on the electronic structure of asymmetrical anchoring groups. We show that the peaks in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate junction respond differently to the applied voltage. Depending upon the origin of a transmission resonance in the orbital interaction picture, its energy can be shifted along with the chemical potential of the electrode to which the molecule is more strongly or more weakly coupled.  相似文献   

16.
Ribonucleic acid (RNA) homopolymer thin films on highly oriented pyrolytic graphite (HOPG) were prepared in ultrahigh vacuum (UHV) directly from aqueous solution by electrospray (ES) injection. The polyadenosine (poly rA) films were prepared in several steps of increasing thickness without breaking the vacuum. Before deposition and between deposition steps, the samples were characterized with photoemission spectroscopy (PES). Both X-ray and ultraviolet photoemission spectroscopy (XPS and UPS) were employed. XPS enabled the detailed measurement of core level peaks, giving insight into the chemical interaction at the interface and the layer morphology. The corresponding UP-spectra sequence allowed us to directly follow the transition from HOPG valence bands to the poly rA highest occupied molecular orbital (HOMO) structure. This enabled the determination of the poly rA ionization energy and work function as well as the charge injection barriers between the Fermi level of the HOPG substrate and the poly rA HOMO. The injection barrier between the lowest unoccupied molecular orbital (LUMO) and the HOPG Fermi level was determined using the HOMO-LUMO gap value determined by optical absorption. The results indicate that significant injection barriers exist between HOPG and the poly rA overlayer, limiting conductivity across this interface.  相似文献   

17.
Three novel low‐bandgap copolymers containing alkylated 4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole (HBT) and different electron‐rich functional groups (dialkylfluorene (PFV‐HBT), dialkyloxyphenylene (PPV‐HBT) and dialkylthiophene (PTV‐HBT)) were prepared by Horner polycondensation reactions and characterized by 1H NMR, gel permeation chromatography, and elemental analysis. The alkyl side chain brings these polymeric materials good solubility in common organic solvents, which is critical for the manufacture of solar cells in a cost‐effective manner. The copolymers exhibit low optical bandgap from 1.48 to 1.83 eV. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the copolymers were measured by cyclic voltammetry. Theoretical calculations revealed that the variation laws of HOMO and the LUMO energy levels are well consistent with cyclic voltammetry measurement. The bulk heterojunction photovoltaic devices with the structure of ITO/PEDOT‐PSS/polymer:PCBM/LiF/Al were fabricated by using the three copolymers as the donor and (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM) as the acceptor in the active layer. The device based on PTV‐HBT:PCBM (1:4 w/w) achieved a power conversion efficiency of 1.05% under the illumination of AM 1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
We report how closely the Kohn-Sham highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) eigenvalues of 11 density functional theory (DFT) functionals, respectively, correspond to the negative ionization potentials (-IPs) and electron affinities (EAs) of a test set of molecules. We also report how accurately the HOMO-LUMO gaps of these methods predict the lowest excitation energies using both time-independent and time-dependent DFT (TD-DFT). The 11 DFT functionals include the local spin density approximation (LSDA), five generalized gradient approximation (GGA) functionals, three hybrid GGA functionals, one hybrid functional, and one hybrid meta GGA functional. We find that the HOMO eigenvalues predicted by KMLYP, BH&HLYP, B3LYP, PW91, PBE, and BLYP predict the -IPs with average absolute errors of 0.73, 1.48, 3.10, 4.27, 4.33, and 4.41 eV, respectively. The LUMOs of all functionals fail to accurately predict the EAs. Although the GGA functionals inaccurately predict both the HOMO and LUMO eigenvalues, they predict the HOMO-LUMO gap relatively accurately (approximately 0.73 eV). On the other hand, the LUMO eigenvalues of the hybrid functionals fail to predict the EA to the extent that they include HF exchange, although increasing HF exchange improves the correspondence between the HOMO eigenvalue and -IP so that the HOMO-LUMO gaps are inaccurately predicted by hybrid DFT functionals. We find that TD-DFT with all functionals accurately predicts the HOMO-LUMO gaps. A linear correlation between the calculated HOMO eigenvalue and the experimental -IP and calculated HOMO-LUMO gap and experimental lowest excitation energy enables us to derive a simple correction formula.  相似文献   

19.
With density functional theory(DFT) method, the optimization of molecular configurations and the calculation of frontier molecular orbitals were achieved for triphenylamine(TPA)-based dye-sensitized solar cell materials at the B3LYP/6-31G(d, p) level. Time-dependent density functional theory(TD-DFT) was applied to calculating the probability of the transition from the ground state to the excited state. And UV-Vis absorption spectra were derived with Franck-Condon approximation. The conjugation length, substitution groups and spatial effects show a slight influence on the dihedral angle of the TPA group. The increase of conjugation length may cause a smaller energy gap as well as a higher highest occupied molecular orbital(HOMO) and a lower lowest unoccupied molecular orbital (LUMO). The introduction of methoxyl group and TPA group could lower the energy gap while the HOMO and LUMO were elevated in energy.  相似文献   

20.
Both C‐H bonding and antibonding (σCH and σ*CH) of a methyl group would contribute to the highest occupied or lowest unoccupied molecular orbitals (HOMO or LUMO) in methylated derivatives of Ir(ppz)2 3 iq (ppz = 1‐phenylpyrazole and 3iq = isoquinoline‐3‐carboxylate). This is found by analysis of HOMO (or LUMO) formed by linear combination of bond orbitals using the natural bond orbital (NBO) method. The elevated level of HOMO (or LUMO) uniformly found for each methylated derivative, indicating the σCH‐destabilization outweighs the σ*CH‐stabilization. To broaden the HOMO‐LUMO gap, methylation at a carbon having smaller contribution to HOMO and/or larger contribution to LUMO is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号