共查询到20条相似文献,搜索用时 15 毫秒
1.
Kosuke Makiguchi Seiya Kikuchi Toshifumi Satoh Toyoji Kakuchi 《Journal of polymer science. Part A, Polymer chemistry》2013,51(11):2455-2463
The ring‐opening polymerization (ROP) of cyclic esters, such as ε‐caprolactone, 1,5‐dioxepan‐2‐one, and racemic lactide using the combination of 3‐phenyl‐1‐propanol as the initiator and triflimide (HNTf2) as the catalyst at room temperature with the [monomer]0/[initiator]0 ratio of 50/1 was investigated. The polymerizations homogeneously proceeded to afford poly(ε‐caprolactone) (PCL), poly(1,5‐dioxepan‐2‐one) (PDXO), and polylactide (PLA) with controlled molecular weights and narrow polydispersity indices. The molecular weight determined from an 1H NMR analysis (PCL, Mn,NMR = 5380; PDXO, Mn,NMR = 5820; PLA, Mn,NMR = 6490) showed good agreement with the calculated values. The 1H NMR and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analyses strongly indicated that the obtained compounds were the desired polyesters. The kinetic measurements confirmed the controlled/living nature for the HNTf2‐catalyzed ROP of cyclic esters. A series of functional alcohols, such as propargyl alcohol, 6‐azido‐1‐hexanol, N‐(2‐hydroxyethyl)maleimide, 5‐hexen‐1‐ol, and 2‐hydroxyethyl methacrylate, successfully produced end‐functionalized polyesters. In addition, poly(ethylene glycol)‐block‐polyester, poly(δ‐valerolactone)‐block‐poly(ε‐caprolactone), and poly(ε‐caprolactone)‐block‐polylactide were synthesized using the HNTf2‐catalyzed ROP. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2455–2463 相似文献
2.
Mikko Kalmi Mohammed Lahcini Pascal Castro Olli Lehtonen Ahmed Belfkira Markku Leskel Timo Repo 《Journal of polymer science. Part A, Polymer chemistry》2004,42(8):1901-1911
The use of tetrakis Sn(IV) alkoxides as highly active initiators for the ring‐opening polymerization of D ,L ‐lactide is reported. The activities of prepared Sn(IV) tetra‐2‐methyl‐2‐butoxide, Sn(IV) tetra‐iso‐propoxide, and Sn(IV) tetra‐ethoxide were compared to a well‐known ring‐opening polymerization initiator system, Sn(II) octoate activated with n‐butanol. All polymerizations were conducted at 75 °C in toluene. The activities of tetrakis Sn(IV) alkoxides grew in order of increasing steric hindrance, and the bulky Sn(IV) alkoxides showed higher activity than the Sn(II) octoate/butanol system. The living character of the polymerization was demonstrated in homopolymerization of D ,L ‐lactide and in block copolymerization of L ‐lactide with ?‐caprolactone. 1H, 13C, and 119Sn NMR were used to characterize the prepared Sn(IV) alkoxides and the polymer microstructure, and size exclusion chromatography was used to determine the molar masses as well as the molar‐mass distributions of the polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1901–1911, 2004 相似文献
3.
R. F. Storey B. D. Mullen G. S. Desai J. W. Sherman C. N. Tang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(20):3434-3442
Polyesters and poly(ester carbonates) were synthesized via ring‐opening polymerization with new tin(II) macroinitiator adducts containing oligomeric L ‐lactide (LLA), rac‐lactide (rac‐LA), and ?‐caprolactone (CL). The novel initiating species were synthesized by the reaction of LLA, rac‐LA, or CL with Sn(OEt)2 (monomer concentration/initiator concentration ≤20) and then were dissolved in methylene chloride or toluene and stored in a stoppered flask for the subsequent ring‐opening polymerization of cyclic esters and carbonates. The soluble tin alkoxide macroinitiators yielded predictable and quantitative initiation of polymerization for up to 1 month of storage time at room temperature. The resulting polymers displayed low polydispersity (≤1.5), and a high monomer conversion (>95%) was obtained within relatively short polymerization times (≤2 h). Adjusting the monomer/macroinitiator ratio effectively controlled the molecular weights of the polymers. NMR was used to characterize the initiating species and polymer microstructure, and size exclusion chromatography was used to determine the molecular weight properties of the polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3434–3442, 2002 相似文献
4.
Kosuke Makiguchi Tatsuya Saito Toshifumi Satoh Toyoji Kakuchi 《Journal of polymer science. Part A, Polymer chemistry》2014,52(14):2032-2039
The ring‐opening polymerization (ROP) of β‐butyrolactone (β‐BL) has been studied using the organocatalysts of diphenyl phosphate (DPP) and bis(4‐nitrophenyl) phosphate (BNPP). The controlled ROP of β‐BL was achieved using BNPP, whereas that of using DPP was insufficient because of its low acidity. For the BNPP‐catalyzed ROP of β‐BL, the dual activation property for β‐BL and the chain‐end models of poly(β‐butyrolactone) (PBL) were confirmed by NMR measurements. The optimized polymerization condition for the ROP of β‐BL proceeded through an O‐acyl cleavage to produce the well‐defined PBLs with molecular weights up to 10,650 g mol?1 and relatively narrow polydispersities of 1.19–1.39. Functional initiators were utilized for producing the end‐functionalized PBLs with the ethynyl, maleimide, pentafluorophenyl, methacryloyl, and styryl groups. Additionally, the diblock copolymers consisting of the PBL segment with the polyester or polycarbonate segments were prepared by the BNPP‐catalyzed ROPs of ε‐caprolactone or trimethylene carbonate without quenching. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2032–2039 相似文献
5.
Hideki Misaka Eisuke Tamura Kosuke Makiguchi Kensuke Kamoshida Ryosuke Sakai Toshifumi Satoh Toyoji Kakuchi 《Journal of polymer science. Part A, Polymer chemistry》2012,50(10):1941-1952
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
6.
Haidong Xia Suli Kan Zhenjiang Li Jia Chen Saide Cui Wenzhuo Wu Pingkai Ouyang Kai Guo 《Journal of polymer science. Part A, Polymer chemistry》2014,52(16):2306-2315
An organocatalytic approach to controlled/living ring‐opening polymerizations (ROPs) of O‐carboxyanhydrides (OCAs) using N‐heterocyclic carbenes (NHCs) as nucleophilic catalysts has been investigated. NHCs with different structures were used in order to compare the catalytic performances in the ROP of OCA of l ‐lactic acid. 1H NMR, SEC, and MALDI‐TOF MS measurements of the products clearly indicated a controlled/living manner of the polymerization. The controlled/living nature was further confirmed by kinetic and chain extension experiments. Additionally, polylol initiators were used to produce α,ω‐dihydroxy telechelic, 3‐, and 4‐armed star‐shaped polymers. Moreover, star‐shaped diblock copolymer, bearing methyl and phenyl side groups, has been successfully synthesized with OCA/NHC system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 . 52, 2306–2315 相似文献
7.
8.
Zhaohui Tang Xuesi Chen Qizhi Liang Xinchao Bian Lixin Yang Longhai Piao Xiabin Jing 《Journal of polymer science. Part A, Polymer chemistry》2003,41(13):1934-1941
An amino isopropoxyl strontium (Sr‐PO) initiator, which was prepared by the reaction of propylene oxide with liquid strontium ammoniate solution, was used to carry out the ring‐opening polymerization (ROP) of cyclic esters to obtain aliphatic polyesters, such as poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA). The Sr‐PO initiator demonstrated an effective initiating activity for the ROP of ε‐caprolactone (ε‐CL) and L‐lactide (LLA) under mild conditions and adjusted the molecular weight by the ratio of monomer to Sr‐PO initiator. Block copolymer PCL‐b‐PLLA was prepared by sequential polymerization of ε‐CL and LLA, which was demonstrated by 1H NMR, 13C NMR, and gel permeation chromatography. The chemical structure of Sr‐PO initiator was confirmed by elemental analysis of Sr and N, 1H NMR analysis of the end groups in ε‐CL oligomer, and Fourier transform infrared (FTIR) spectroscopy. The end groups of PCL were hydroxyl and isopropoxycarbonyl, and FTIR spectroscopy showed the coordination between Sr‐PO initiator and model monomer γ‐butyrolactone. These experimental facts indicated that the ROP of cyclic esters followed a coordination‐insertion mechanism, and cyclic esters exclusively inserted into the Sr–O bond. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1934–1941, 2003 相似文献
9.
The radical ring‐opening polymerization (RROP) behavior of the following monomers is reviewed, and the possibility for application to functional materials is described: cyclic disulfide, bicyclobutane, vinylcyclopropane, vinylcyclobutane, vinyloxirane, vinylthiirane, 4‐methylene‐1,3‐dioxolane, cyclic ketene acetal, cyclic arylsulfide, cyclic α‐oxyacrylate, benzocyclobutene, o‐xylylene dimer, exo‐methylene‐substituted spiro orthocarbonate, exo‐methylene‐substituted spiro orthoester, and vinylcyclopropanone cyclic acetal. RROP is a promising candidate for producing a wide variety of environmentally friendly functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 265–276, 2001 相似文献
10.
Ali Rostami Elahe Sadeh Shaghayegh Ahmadi 《Journal of polymer science. Part A, Polymer chemistry》2017,55(15):2483-2493
A series of tertiary aminosquaramides as bifunctional organocatalysts in the ring‐opening polymerization (ROP) of l ‐lactide (l ‐LA) were developed, allowing the activation of both the l ‐LA monomer and the alcohol group of the initiator/propagating species. Further, the impact of tertiary nitrogen substituents on catalytic activity in ROP of l ‐LA was explored. The tertiary aminosquaramide— an air‐stable and moisture‐stable catalyst—exhibited superior activity in contest with thiourea counterpart when both were equipped with a similar tertiary amine group. Kinetic and chain‐extension experiments indicated that the formed poly(l ‐LA) is featured with narrow polydispersity and high end‐group fidelity, hallmarks of a living polymerization process. The initiator efficiency was further executed at ease by preparation of an ABA triblock copolymer poly (l ‐LA)‐b‐poly (ethylene glycol)‐b‐poly (l ‐LA) in the presence of a dual‐headed PEG macroinitiator. 1H NMR titration experiments suggested a bifunctional catalytic mechanism, wherein both the l ‐LA monomer and the propagating hydroxyl group were activated en route to polymerization. The 1H NMR, SEC, and MALDI‐TOF MS measurements validated the quantitative incorporation of the initiator in the polymeric chains and enchainment over competitive trans‐esterification reaction. Overall, the structure‐activity relationships were surveyed to uncover aminosquaramide as a new bifunctional dual hydrogen‐bond donor catalyst for living ROP of l ‐LA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2483–2493 相似文献
11.
Kosuke Makiguchi Seiya Kikuchi Kazuma Yanai Yoshitaka Ogasawara Shin‐ichiro Sato Toshifumi Satoh Toyoji Kakuchi 《Journal of polymer science. Part A, Polymer chemistry》2014,52(7):1047-1054
The ring‐opening polymerizations (ROPs) of ε‐caprolactone (ε‐CL) and L ‐lactide (LLA) have been studied using the organocatalysts of diphenyl phosphate (DPP) and 4‐dimethylaminopyridine (DMAP). The “dual activation” property of DPP and the “bifunctional activation” property of DPP/DMAP were confirmed by the NMR measurement for ε‐CL and its chain‐end model of poly(ε‐caprolactone) and for LLA and its chain‐end model of poly(L ‐lactide) (PLLA), respectively. The molar ratio of DPP/DMAP was optimized as 1/2 for the ROP of LLA leading to the well‐defined PLLA, such as the molecular weight determined from 1H NMR measurement of 19,200 g mol?1 and the narrow polydispersity of 1.10. Additionally, functional initiators were utilized for producing the end‐functionalized PLLAs. The DPP‐catalyzed ROPs of ε‐CL and its analogue cyclic monomers and then the DPP/DMAP‐catalyzed ROP of LLA produced block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1047–1054 相似文献
12.
A series of aluminum dimethyl complexes 1 – 6 bearing N‐[2‐(pyrrolidinyl)benzyl]anilido ligands were synthesized and well characterized. The molecular structure of complex 1 determined by an X‐ray diffraction study indicates the bidentate chelating mode of the pyrrolidinyl‐anilido ligand. In the absence of a coinitiator, these complexes exhibited excellent control toward the polymerizations of ε‐caprolactone and rac‐lactide, affording polyesters with quite narrow molecular weight distributions (Mw/Mn = 1.04–1.26). The end group analysis of ε?CL oligomer via 1H NMR and ESI‐TOF MS methods gave strong support to the hypothesis that the polymerization catalyzed by these aluminum complexes proceeds via a coordination‐insertion mechanism involving a unique Al? N (amido) bond initiation. Via 1H NMR scale oligomerization studies, it is suggested that the insertion of the first lactide monomer into Al? N bond of the complex is much easier than the insertion of lactide monomer into the newly formed Al? O (lactate) bond and might also be easier than the insertion of the first ε?CL monomer into Al? N bond. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3096–3106 相似文献
13.
Alvaro Carrillo Ravi S. Kane 《Journal of polymer science. Part A, Polymer chemistry》2004,42(13):3352-3359
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004 相似文献
14.
Hong Li Chenhong Wang Jin Yue Xiaona Zhao Feng Bai 《Journal of polymer science. Part A, Polymer chemistry》2004,42(15):3775-3781
Hexabutyl guanidinium acetate (HBG · OAc) was synthesized and successfully used as a catalyst for the ring‐opening polymerization (ROP) of lactides. The experimental results indicated that the guanidinium salt HBG · OAc showed satisfactory catalytic behavior. Polymerization in bulk (120 °C, 18 h) produced polylactides with moderate molecular weights (number‐average molecular weight = 2.0 × 104) and very narrow molecular weight distributions (polydispersity index = 1.07–1.12). A kinetic study of polymerization in bulk with HBG · OAc as an initiator revealed that the polymerization possessed typical characteristics of living polymerization. A ROP mechanism by HBG · OAc was proposed on the basis of the additive effect of the polymerization and the 1H NMR characterization of the microstructure of the product polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3775–3781, 2004 相似文献
15.
Anna Finne Reema Ann‐Christine Albertsson 《Journal of polymer science. Part A, Polymer chemistry》2003,41(19):3074-3082
Three different, new germanium initiators were used for ring‐opening polymerization of L ‐lactide. Chlorobenzene and 120 °C was a usable polymerization system for solution polymerization, and the results from the polymerizations depended on the initiator structure and bulkiness around the insertion site. The average molecular weights as measured by size exclusion chromatography increased linearly with the monomer conversion, and the molecular weight dispersity was around 1.2 for initiators 1 and 2 , whereas it was around 1.4 for initiator 3 . The average molecular weight of poly(L ‐lactide) could be controlled with all three initiators by adding different ratios of monomer and initiator. The reaction rate for the solution polymerization was, however, overall extremely slow. With an initial monomer concentration of 1 M and a monomer‐to‐initiator ratio of 50, the conversion was 93% after 161 h for the fastest initiator. In bulk polymerization, 160 °C, the conversion was 90% after 10 h. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3074–3082, 2003 相似文献
16.
Daniel Bratton Malcolm Brown Steven M. Howdle 《Journal of polymer science. Part A, Polymer chemistry》2005,43(24):6573-6585
Ring‐opening polymerization (ROP) in supercritical carbon dioxide (scCO2) has been the subject of much recent interest, although few publications describe the development of stabilizers to produce biodegradable particles of poly(L ‐lactide) (PLLA) and polyglycolide (PGA). Here we describe the synthesis of a series of novel fluorinated diblock copolymers by the acid‐catalyzed esterification of well‐defined blocks of polycaprolactone (PCL) with Krytox 157FSL, a carboxylic acid terminated perfluoropolyether. These diblock copolymers were then tested as stabilizers in the ROP of glycolide and L ‐lactide, or a mixture of the two, in scCO2, and this resulted in the corresponding homopolymers or random copolymers. In the absence of stabilizers, only aggregated solids were formed. When the reaction was repeated with a stabilizer, PGA and PLLA were obtained as discrete microparticles. The stabilizer efficiency increased as the length of the polymer‐philic PCL block increased. One optimized stabilizer worked at loadings as low as 3% (w/w) with respect to the monomer, demonstrating these to be extremely effective stabilizers. It was found that to produce microparticles with this process, the product polymers must be semicrystalline; amorphous polymers, such as poly(lactide‐co‐glycolide), are plasticized by scCO2 and yield only aggregated solids rather than discrete particles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6573–6585, 2005 相似文献
17.
Yong Miao Yupin Phuphuak Cyril Rousseau Till Bousquet André Mortreux Suwabun Chirachanchai Philippe Zinck 《Journal of polymer science. Part A, Polymer chemistry》2013,51(10):2279-2287
Binaphthyl‐diyl hydrogen phosphate has been assessed for the first time as a catalyst for the ring‐opening polymerization of ε‐caprolactone (CL) and δ‐valerolactone (VL). In the presence of benzyl alcohol as coinitiator at 40–60 °C, the polymerization is quantitative and controlled both in terms of dispersity and of number‐average molecular weight corresponding to the monomer/initiator ratio. The use of a selectively protected D ‐glucose derivative bearing the primary C6 hydroxyl group as initiator leads to the quantitative end‐functionalization of the polyesters in rather short reaction times (ca. 10 min at 60 °C for δ‐VL) with dispersities around 1.08–1.10. Methyl‐α‐D ‐glucopyranoside has been used as a carbohydrate polyol initiator in bulk. The initiation efficiency is partial, leading to hydrophilic carbohydrates functionalized polylactones in a one‐step procedure. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
18.
Bungo Ochiai Takeshi Endo 《Journal of polymer science. Part A, Polymer chemistry》2007,45(13):2827-2834
The tendencies of ring‐opening processes in radical ring‐opening polymerizations were evaluated by AM1 and PM3 semi‐empirical calculations and 6‐31G*‐level calculations based on the density functional theory (DFT) B3LYP models. Sixteen cyclic monomers bearing vinyl or exomethylene groups were categorized into ring‐opening and no‐ring‐opening monomers by the evaluation of the differences of the internal energies and the lengths of the cleaving bonds between the ground states of the initial radicals and the activated states in the ring‐opening processes. Although the semi‐empirical calculations not parameterized to radical reactions resulted in the moderate categorization of the ring‐opening monomers, the DFT calculation clearly distinguished the ring‐opening and no‐ring‐opening monomers. The ring‐opening tendencies were also evaluated with the changes in the internal energies throughout the ring‐opening processes, but this method could not group the ring‐opening and no‐ring‐opening monomers clearly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2827–2834, 2007 相似文献
19.
Macrocyclic (arylene thioether ketone) oligomers together with a linear poly(phenylene sulfide ketone) oligomer were synthesized by a one‐step reaction. The macrocycles and linear oligomer were fully characterized by 13C‐NMR, H‐NMR, matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS), differential scanning calorimetry (DSC) and FT‐IR. Uncatalyzed, simultaneously ring‐opening polymerization (ROP) of the macrocycles and the mixture of macrocycles and linear oligomer were carried out under dynamic heating conditions. The ROP temperature of the macrocycles decreased upon mixing it with the linear oligomer. The ROP conditions and mechanism were investigated and discussed. The macrocycles and their mixture show potential applications in high temperature adhesives and sealants. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
20.
Jinbao Xu Junzhe Song Stergios Pispas Guangzhao Zhang 《Journal of polymer science. Part A, Polymer chemistry》2014,52(8):1185-1192
Ring‐opening polymerization (ROP) of ε‐caprolactone (CL) using salicylic acid (SAA) as the organocatalyst and benzyl alcohol as the initiator in bulk at 80 °C successfully proceeded to give a narrowly distributed poly(ε‐caprolactone) (PCL). In addition, 2‐hydroxyethyl methacrylate, propargyl alcohol, 6‐azido‐1‐hexanol, and methoxy poly(ethylene glycol) were also used as functional initiators. The 1H NMR, SEC, and MALDI‐TOF MS measurements of the PCL clearly indicate the presence of the initiator residue at the chain end, implying that the SAA‐catalyzed ROP of CL was through the activated monomer mechanism. The kinetic experiments confirmed the controlled/living nature of the SAA‐catalyzed ROP of CL. Furthermore, the block copolymerization of CL and δ‐valerolactone successfully proceeded to give poly(ε‐caprolactone)‐block‐poly(δ‐valerolactone). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1185–1192 相似文献