首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this work was to analyze the microscopic feature of binary solvent systems formed by a molecular solvent (acetonitrile or dimethylformamide or methanol) and an ionic liquid (IL) cosolvent [1‐(1‐butyl)‐3‐methylimidazolium tetrafluoroborate or 1‐(1‐butyl)‐3‐methylimidazolium hexafluorophosphate]. The empirical solvatochromic solvent parameters ET(30), π*, α, and β were determined from the solvatochromic shifts of adequate indicators. The behavior of the solvent systems was analyzed according to their deviation from ideality. The study focused on the identification of solvent mixtures with relevant solvating properties in order to select mixed solvents with particular characteristics. The comparison of the molecular–microscopic solvent parameters corresponding to the selected binary mixtures with both ILs considered at similar mixed‐solvent composition revealed that the difference is centered on the basic character of them. A kinetic study of a nucleophilic aromatic substitution reaction between 1‐fluoro‐2,4‐dinitrobenzene (FDNB) and 1‐butylamine (BU) developed in (acetonitrile or dimethylformamide + IL) solvent mixtures is presented in order to investigate and compare the solvent effects on a chemical process. For the explored reactive systems the solvation behavior is dominated by both the dipolarity/polarizability and the basicity of the media, contributing these solvent properties to accelerating the chemical process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
1H and 13C NMR chemical shifts were measured for a set of six isomers—the cis and trans 2‐, 3‐, and 4‐methylcyclohexanols. 1H and 13C NMR chemical shifts were computed at the B3LYP, WP04, WC04, and PBE1 density functional levels for the same compounds, taking into account the Boltzmann distribution among conformational isomers (chair–chair forms and hydroxyl rotamers). The experimental versus computed chemical shift values for proton and carbon were compared and evaluated (using linear correlation (r2), total absolute error (|Δδ|T), and mean unsigned error (MUE) criteria) with respect to the relative ability of each method to distinguish between cis and trans stereoisomers for each of the three constitutional isomers. For 13C shift data, results from the B3LYP and PBE1 density functionals were not sufficiently accurate to distinguish all three pairs of stereoisomers, while results using the WC04 functional did do so. For 1H shift data, each of the WP04, B3LYP, and PBE1 methods was sufficiently accurate to make the proper stereochemical distinction for each of the three pairs. Applying a linear correction to the computed data improved both the absolute accuracy and the degree of discrimination for most of the methods. The nature of the cavity definition used for continuum solvation had little effect. Overall, use of proton chemical shift data was more discriminating than use of carbon data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Comparison of 13C NMR of C = N bond chemical shifts δC(C = N) in substituted N‐(phenyl‐ethylene)‐anilines XArC(Me) = NArY (XPEAYs) with that in substituted N‐(benzylidene)‐anilines XArCH = NArY (XBAYs) was carried out. The δC(C = N) of 61 samples of XPEAYs were measured, and the substituent effect on their δC(C = N) were investigated. The results show the factors affecting the δC(C = N) of XPEAYs are quite different from that of XBAYs. A penta‐parameter correlation equation was obtained for the 61 compounds, which has correlation coefficient 0.9922 and standard error 0.12 ppm. The result indicates that, in XPEAYs, the inductive effects of substituents X and Y are major factors affecting the δC(C = N), while the conjugative effect of them have very little effect on the δC(C = N) and can be ignored. The substituent‐specific cross‐interaction effects between X and Y and between Me of C = N bond and substituent Y are important factors affecting the δC(C = N). Also, the excited‐state substituent parameter of substitute Y has certain contribution to the δC(C = N). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The 13C nuclear magnetic resonance (NMR) chemical shifts δc of bridge group carbons (C‐β, C‐α, and C═N) were measured in this work for a wide set of substituted cinnamyl anilines p‐XC6H4CH═CHCH═NC6H4Y‐p (X = NO2, Cl, H, Me, MeO, or NMe2; Y = NO2, CN, CO2Et, Cl, F, H, Me, MeO, or NMe2) and were used to study the substituent effect. In the study on 13C NMR chemical shifts of the titled compounds with single substituent changed, for every bridge carbon δc, the effect of cinnamyl substituent X is opposite to that of aniline substituent Y. That is, the action of the same substituent on different aromatic rings is different from the 13C NMR chemical shifts, and for C‐β, C‐α, and C═N, the choice of correlation equation depends on the ratio ρF(Y)/ρR(Y). When the ratio ρF(Y)/ρR(Y) is close to 1, the chemical shifts of bridge carbons can be well correlated with the single‐parameter equation; otherwise, it is better to adopt the dual‐parameter equation for correlation, and the further the values of ρF(Y)/ρR(Y) stray from 1, the more suitable the corresponding δc values are to be correlated with the dual‐parameter equation. In the study on δc of model compounds with simultaneous variations of substituents X and Y, for δc(C═N), a multi‐parameter correlation equation is obtained, and the substituent cross‐interaction item Δσ2 is suitable to scale the interaction between substituents; however, for δc(C‐α and C‐β), the substituent cross‐interaction item Δσ2 is perhaps too small to be observed. The multi‐parameter correlation equations can be recommended to predict well the corresponding δc values of disubstituted cinnamyl anilines. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The type of specific intermolecular and interionic interactions that are established when an ionic liquid is dissolved in water was here analysed. The study of the solvatochromic response of dipolarity micro‐sensors based on Reichardt ET(30) and Kamlet–Abboud–Taft solvent scales and the application of the solvent exchange model confirmed the formation of different intersolvent complexes in binary mixtures of (water + [C4mim] [BF4]/[Br]) type. These complexes provide H‐bond or electron pairs to the polar network, respectively. Moreover, for 4‐methoxybenzenesulfonyl chloride hydrolysis reaction in the (water + [C4mim] [BF4]) system, a higher inhibition (13 times) on the kobs values was observed. Multiple linear regression analysis that allows confirming the solvent effect upon the reactive system is due to the hydrogen‐bond donor properties of intersolvent complex formed. Then, the correlation between two different solvent‐dependent processes proved to be successful. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Six dyes with N,N‐dimethylaminophenyl and 4‐nitrophenyl or 2,4‐dinitrophenyl groups in their molecular structures were prepared and characterized. These compounds have different conjugated bridges (C?C, C?N, and N?N) connecting the electron‐donor and the electron‐acceptor groups. All compounds are solvatochromic, with reverse solvatochromism occurring. The solvatochromic band observed in each spectrum for the dyes is due to a π ? π* transition, of an intramolecular charge transfer nature, which occurs from the electron‐donor N,N‐dimethylaminophenyl group to the electron‐acceptor group in the molecules, which is reinforced by the structures of the compounds optimized by applying density functional theory, which exhibit high planarity. The reverse solvatochromism was explained considering two resonance structures. The benzenoid form is better stabilized in less polar solvents and characterizes the region displaying positive solvatochromism, while the dipolar form is better stabilized in more polar solvents, in the region of negative solvatochromism. The Catalán multiparametric approach was used to study the contribution of solvent acidity, basicity, dipolarity, and polarizability to the solvatochromism exhibited by the compounds. These compounds are good candidates for the investigation of the polarizability and, to a lesser extent, the dipolarity of the medium, with very little interference from specific interactions of the solvent through hydrogen bonding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by 13C and 15N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of 13C and 15N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of 13Cγ, 13Cδ2, 15Nδ1, and 15Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that 1H, 13C, and 15 chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the 1H, 13C and 15N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.  相似文献   

9.
An earlier study fit calculated dynamic 13C‐NMR spectra in trifluoroacetic acid (TFA) (with added sulfuric acid) to slow exchange between N‐protonated and O‐protonated tautomers of 1‐azabicyclo[3.3.1]nonan‐2‐one. The present study reports simultaneous observation of both carbonyl 13C peaks in 40% sulfuric acid/60% TFA at ?40 °C. This furnishes the only example in which experimental carbonyl 13C chemical shifts may be compared with a neutral lactam (in TFA or CDCl3) with its N‐protonated and O‐protonated derivatives. The seemingly anomalous upfield chemical shifts (experimental and computational) of the 13C carbonyl peaks in this N‐protonated lactam (and other twisted N‐protonated lactams) relative to the free bases are compared with data for unstrained protonated lactams and amides. The results are rationalized through conventional resonance structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In order to understand the nature of the interactions of biologically important ligands, it is necessary to carry out the physico‐chemical studies of these compounds with their biological targets (e.g., receptors in the cell or important cell components). Results of this study make it possible to predict some properties of a molecule, such as its reactivity, durability of complex compounds, and kinship to enzymes. In this paper the effect of alkali metal cations (Li, Na, K, Rb, and Cs) on the electronic structure of m‐methoxybenzoic acid (m‐anisic acid) was studied. The experimental IR (in solid state and solution), Raman, UV (in solid state and solution), 1H, and 13C NMR spectra of m‐methoxybenzoic acid, and its salts were registered, assigned, and analyzed. Some of the obtained results were compared with published data for o‐anisic acid and o‐anisates. The structures of anisic acid and Li, Na, and K m‐anisates were optimized at the B3LYP/6‐311++G** level. The IR, 1H, and 13C NMR spectra and NPA, ChelpG, and MK atomic charges were calculated. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change in the electronic charge distribution in anisate anion that is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of anisates; (2) systematic 1H and 13C NMR chemical shifts; (3) hypsochromic shifts in UV spectra of salts as compared to ligands. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The experimental 1H and 13C NMR spectra of 13 phenyl cinnamates and four 4‐methylcoumarins were investigated and their chemical shifts assigned on the basis of the two‐dimensional spectra. For the unsubstituted cinnamic acid phenyl ester, optimized molecular structures were calculated at a B3LYP/6‐311++G(d,p) level of theory. 1H and 13C NMR chemical shifts were also calculated with the GIAO method at the B3LYP/6‐311 + G(2d,p) level of theory. The comparison between experimental and calculated NMR chemical shift suggests that the experimental spectra are formed from the superposition spectra of the two lowest energy conformers of the compound in solution. The most stable s‐cis configuration found in our studies is also the conformation adopted for a related phenyl cinnamate in solid state. The experimental results were analyzed in terms of the substituent effects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The solvatochromism of nine push–pull substituted catechol derivatives has been studied in a set of 39 various solvents. The influence of successive methyl substitution at the catechol OH groups on the extent of the solvatochromic shift has been investigated. The positive solvatochromism of 2‐(3,4‐dihydroxybenzylidene)‐2H‐indene‐1,3‐dione amounts 4360 cm–1, which ranges from toluene to hexamethyl‐phosphoric triamide. To the best of our knowledge, it is one of the largest positive solvatochromic extent measured for a positive solvatochromic dye, comparable with Brooker's thiobarbituric acid with an extent of 4400 cm–1. The detailed analyses of the solvatochromism were carried out by alternatively using the Kamlet–Taft and Catalán solvent parameters to achieve information of dipolarity versus polarizability effects of solvent upon solvatochromic properties. In solvents with high β values such as alcohols (0.66 < β < 0.90), amides (0.48 < β < 0.80), dimethyl sulfoxide (β = 0.76), tetramethyl urea (β = 0.80) and hexamethyl‐phosphoric triamide (β = 1.05) UV–Vis absorption spectra show two separate λmax, which are caused by a deprotonation reaction. The solvatochromic behaviour of the anionic species is compared with those of the catechol derivatives. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Long‐range electronic substituent effects were targeted using the substituent dependence of δC(C═N), and specific cross‐interactions were explored extendedly. A wide set of N‐(4‐X–benzylidene)‐4‐(4‐Y–styryl) anilines, p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y (X = NMe2, OMe, Me, H, Cl, F, CN, or NO2; Y = NMe2, OMe, Me, H, Cl, or CN) were prepared for this study, and their 13C NMR chemical shifts δC(C═N) of C═N bonds were measured. The results show that both the inductive and resonance effects of the substituents Y on the δC(C═N) of p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y are less than those of the substituents Y in p‐X–C6H4CH═NC6H4p‐Y. Moreover, the sensitivity of the electronic character of the C═N function to electron donation/electron withdrawal by the substituent X or Y attenuates as the length of the conjugated chain is elongated. It was confirmed that the substituent cross‐interaction is an important factor influencing δC(C═N), not only when both X and Y are varied but also when either X or Y is fixed. The long‐range transmission of the specific cross‐interaction effects on δC(C═N) decreases with increasing conjugated distance between X and Y. The results of this study suggest that there is a long‐range transmission of the substituent effects in p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of solvents on chemical phenomena (rate and equilibrium constants, spectroscopic transitions, etc.) are conveniently described by solvation free‐energy relationships that take into account solvent acidity, basicity and dipolarity/polarizability. The latter can be separated into its components by manipulating the UV–vis spectra of two solvatochromic probes, 2‐(N,N‐dimethylamino)‐7‐nitrofluorene (DMANF) and a di‐(tert‐butyl)‐tetramethyl docosanonaen probe (ttbP9) whose synthesis is laborious and expensive. Recently, we have shown that the natural dye β‐carotene can be conveniently employed instead of ttbP9 for the determination of solvent polarizability (SP) of 76 molecular solvents and four ionic liquids. In the present work, we report the polarizabilities of further 24 solvents. Based on the solvatochromism of β‐carotene and DMANF, we have calculated solvent dipolarity (SD) for 103 protic and aprotic molecular solvents, and ionic liquids. The dependence of SD and SP on the number of carbon atoms in the acyl‐ or alkyl group of several homologous series (alcohols; 2‐alkoxyethanols; carboxylic acid‐ anhydrides, and esters, ionic liquids) is calculated and briefly discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
《光谱学快报》2013,46(4-5):477-485
Abstract

The 1H‐ and 13C‐NMR spectra of some substituted stilbenes and chalcones were assigned unambiguously on the basis of a combination of homo‐ (COSY) and heteronuclear (HETCOR) two‐dimensional methods, the chemical shifts, as well as spin‐coupling constants. The Aik empirical parameters of the –O–C(S)–N(CH3)2, –S–C(O)–N(CH3)2, and –SH group were calculated to help predict the chemical shifts of substituted stilbenes, 4′‐nitrostilbenes, and chalcones. The 1H‐ and 13C‐NMR spectra have been shown to be able to differentiate between the isomers of O‐stilbenyl (4, 5) and S‐stilbenyl N,N‐dimethylthiocarbamates (7, 8) as well as O‐chalconyl (6) and S‐chalconyl N,N‐dimethylthiocarbamates (9).  相似文献   

17.
The solvatochromism of β‐carotene confirms its high sensitivity not only to the polarizability of the medium, but is also contaminated by additional solute/solvent interactions due to its dipolarity and acidity, as well as to changes in its molecular structure in some solvents. A thermochromic analysis of β‐carotene dissolved in 2‐methylbutane and 1‐chlorobutane (ClB) revealed the influence of the solvent dipolarity on its UV/Vis‐spectroscopy behavior in these solvents. Applying Abe's method to the solvent‐induced shift of the first Vis absorption band of β‐carotene in ClB revealed that the electronic excitation substantially increases its polarizability and its dipole moment. Other experimental evidence also confirms that β‐carotene is not a suitable polarizability probe of the medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The behaviour of Schiff bases of 3‐hydroxy‐4‐pyridincarboxaldehyde and 4‐R‐anilines (R?H, CH3, OCH3, Br, Cl, NO2) in acid media has been described. 1H, 13C, 15N‐NMR chemical shifts allow to establish the protonation site and its influence on the hydroxyimino/oxoenamino tautomerism. DFT calculations, electronic spectra and X‐ray diffraction are in agreement with the NMR conclusions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We present a theoretical and experimental study of the structure and nuclear magnetic resonance (NMR) parameters of the pentacarbonyltungsten complexes of η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine, η2‐norbornene, and imidazolidine‐2‐thione. The three complexes have a pseudo‐octahedral molecular structure with the six ligands bonded to the tungsten atom. The η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine‐pentacarbonyl tungsten complex was synthesized for the first time. For all compounds, we present four‐component relativistic calculations of the NMR parameters at the Dirac–Kohn–Sham density functional level of theory using hybrid functionals. These large‐scale relativistic calculations of NMR chemical shifts and spin–spin coupling constants were compared with available experimental data, either taken from the literature or measured in this work. The inclusion of solvent effects modeled using a conductor‐like screening model was found to improve agreement between the calculated and experimental NMR parameters, and our best estimates for the NMR parameters are generally in good agreement with available experimental results. The present work demonstrates that four‐component relativistic theory has reached a level of maturity that makes it a convenient and accurate tool for modeling and understanding chemical shifts and indirect spin–spin coupling constants of organometallic compounds containing heavy elements, for which conventional non‐relativistic theory breaks down. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Geometric optimization and gauge including atomic orbital (GIAO). 1H and 13C NMR chemical shift calculations with Hartree–Fock (HF) method and density functional method (B3LYP), using the 6‐31G(d) and 6‐31+G(d) basis sets, are proposed as a tool to be applied in the structural characterization of ethene‐1,1,2,2‐tetrayltetramethylene tetrathiocyanate, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plot of computed versus experimental 13C NMR chemical shifts in DMSO‐d6 are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号