首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The competitive rate data and Taft relationships for the coupling of bromomagnesium n‐butyl (substituted phenyl) cuprates with alkyl bromides show that selective n‐butyl transfer can be explained by an oxidative addition mechanism. Taft reaction constants also show that the residual group FG‐C6H4 in the mixed cuprate n‐Bu(FG‐C6H4)CuMgBr changes the ability of the copper nucleophile to react with the electrophile RBr. These results provide support for the commonly accepted hypothesis regarding the dependence of the R1 group transfer ability on the strength of R2? Cu bond in reactions of R1R2CuMgBr reagents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The gas‐phase acidities (GA) of various aryl‐substituted fluoroalkanes, XC6H4CH(R1)R2, were calculated at the B3LYP/6‐311 + G(d,p)//B3LYP/6‐311 + G(d,p). The acidity values of alkanes having a common substituent X varied significantly with the change of R1 and R2. Their changes in acidity of 1 and 2 having two strong electron‐withdrawing groups (CF3 or C2F5) at the deprotonation site and 8 , 9 , 10 , 11 having no fluorine atom at β‐position were linearly correlated with the corrected number of fluorine atoms contained in the fluorinated alkyl group (R2 > 0.999). On the other hand, the GA values of β‐fluorine substituted alkanes ( 3 , 4 , 5 , 6 , 7 ) deviated in a stronger acid direction from the line. The enhanced acidity was attributed to the additional stabilization of the conjugate anion caused by the β‐fluorine negative hyperconjugation. The magnitude of β‐fluorine negative hyperconjugation of the fluorinated alkyl group (ΔGoβ‐F) given by the deviations from the line decreased with increasing electron‐withdrawing ability of substituent X on the benzene ring, indicating that β‐fluorine negative hyperconjugation competes with the electronic effect of the substituent X. The GAel values obtained by subtraction ΔGoβ‐F from the apparent GA value were successfully correlated in terms of the Yukawa–Tsuno equation. The obtained ρel and r?el values were linearly related to the GAel value of the respective phenyl‐substituted fluoroalkanes, supporting our previous conclusion that the ρ and r? values for the substituent effect caused by the electronic effects of the substituent on the acidity are determined by the thermodynamic stability of the parent ion (ring substituent = H). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We have studied the mechanism of solvolysis of arenesulfonyl chlorides by propan‐1‐ol and propan‐2‐ol at 303‐323 K. Kinetic profiles were appropriately fit by first‐order kinetics. Reactivity increases with electron‐donating substituents. Ortho‐alkyl substituted derivatives of arenesulfonyl chlorides show increased reactivity, but the origin of this “positive” ortho‐effect remains unclear. Likely, ortho‐methyl groups restrict rotation around the C‐S bond, facilitating the attack of the nucleophile. No relevant reactivity changes have been found with propan‐1‐ol and propan‐2‐ol in terms of nucleophile steric effect. The existence of isokinetic relationships for all substrates suggests a single mechanism for the series. Solvolysis reactions of all substrates in both alcohols show isokinetic temperatures (Tiso) close to the working temperature range, which is an evidence of the process being influenced by secondary reactivity factors, likely of steric nature in the TS. Solvation plays a relevant role in this reaction, modulating the reactivity. In some cases, the presence of t‐Bu instead of Me in para‐ position leads to changes in the first solvation shell, increasing the energy of the reaction (ca. 1 kJ·mol?1). The obtained results suggest the same kinetic mechanism of solvolysis of arenesulfonyl chlorides for propan‐1‐ol and propan‐2‐ol, as in MeOH and EtOH, where bimolecular nucleophilic substitution (SN2) takes place with nucleophilic solvent assistance of one alcohol molecule and the participation of the solvent network involving solvent molecules of the first solvation shell.  相似文献   

4.
A homogeneous, molecular, gas‐phase elimination kinetics of 2‐phenyl‐2‐propanol and 3‐methyl‐1‐ buten‐3‐ol catalyzed by hydrogen chloride in the temperature range 325–386 °C and pressure range 34–149 torr are described. The rate coefficients are given by the following Arrhenius equations: for 2‐phenyl‐2‐propanol log k1 (s?1) = (11.01 ± 0.31) ? (109.5 ± 2.8) kJ mol?1 (2.303 RT)?1 and for 3‐methyl‐1‐buten‐3‐ol log k1 (s?1) = (11.50 ± 0.18) ? (116.5 ± 1.4) kJ mol?1 (2.303 RT)?1. Electron delocalization of the CH2?CH and C6H5 appears to be an important effect in the rate enhancement of acid catalyzed tertiary alcohols in the gas phase. A concerted six‐member cyclic transition state type of mechanism appears to be, as described before, a rational interpretation for the dehydration process of these substrates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The gas‐phase acidities (GA) of 2‐aryl‐2‐chloro‐1,1,1‐trifluoroethanes ( 1a ), 2‐aryl‐2‐fluoro‐1,1,1‐trifluoroethanes ( 2a ), and related compounds, XC6H4CH(Z)R where Z = Cl ( 1 ) or F ( 2 ) and R = C2F5 ( b ), t‐C4F9 ( c ), C(CF3)2C2F5 ( d ), C(CF3)2Me ( e ), Me ( f ), H ( g ), were investigated experimentally and computationally. On the basis of an excellent linear correlation (R2 > 0.99) of acidities of 1c , 1d , 1e , 1f and 2c , 2d , 2e , 2f where there is no fluorine atom at β‐position to the deprotonation site with the corrected number of fluorine atoms contained in the fluorinated alkyl group, the extent of β‐fluorine negative hyperconjugation of the CF3 and C2F5 groups (ΔGoβ‐F) was evaluated. The GAel values given by subtraction ΔGoβ‐F from the apparent GA value were considered to represent the electronic effect of the substituent X. The substituent effects on the GAel values and GA values for 1c , 1d , 1e , 1f and 2c , 2d , 2e , 2f were successfully analyzed in terms of the Yukawa–Tsuno equation. The variation of resonance demand parameter r? with the R group observed for various XC6H4CH(Z)R was linearly related to the GA (GAel) value of the respective phenyl‐substituted fluorinated alkanes. On the other hand, the corresponding correlation for the ρ values provided three lines for ArCH(Cl)R, ArCH(F)R and ArCH2R, respectively. These results supported our previous conclusion that the r? and ρ values are governed by the thermodynamic stability of the parent ion (ring substituent = H). Other factors arising from an atom bonded to the acidic center also influence the ρ value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Nucleophilic substitution and dehydrochlorination reactions of a number of the ring‐substituted 1‐(arylsulfonyl)‐2‐R‐4‐chloro‐2‐butenes are studied both experimentally and theoretically. The developed synthetic procedures are characterized by a general rapidity, cheapness, and simplicity providing moderate to high yields of 1‐arylsulfonyl 1,3‐butadienes (48–95%), 1‐(arylsulfonyl)‐2‐R‐4‐(N,N‐dialkylamino)‐2‐butenes (31–53%), 1‐(arylsulfonyl)‐2‐R‐2‐buten‐4‐ols (37–61%), and bis[4‐(arylsulfonyl)‐3‐R‐but‐2‐enyl]sulfides (40–70%). The density functional theory B3LYP/6‐311++G(2d,2p) calculations of the intermediate allylic cations in acetone revealed their high stability occurring from a resonance stabilization and hyperconjugation by the SO2Ar group. The reactivity parameters estimated at the bond critical points of the diene/allylic moiety display a high correlation (R2 > 0.97) with the Hammett (σp) constants. 1‐Arylsulfonyl 1,3‐butadienes are characterized by a partly broken π conjugated system, which follows from analysis of the two‐centered delocalization (δ) and localization (λ) index values. The highest occupied molecular orbital energies of 1‐arylsulfonyl 1,3‐butadienes are lower than those of 1,3‐butadiene explaining their low reactivity towards the Diels–Alder condensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction mechanisms as well as substituted effect and solvent effect of the enyne–allenes are investigated by Density Functional Theory (DFT) method and compared with the Myers–Saito and Schmittel reactions. The Myers–Saito reaction of non‐substituted enyne–allenes is kinetically and thermodynamically favored as compared to the Schmittel reaction; while the concerted [4 + 2] cycloaddition is only 1.32 kcal/mol higher than the C2? C7 cyclization and more exothermic (ΔRE = ?69.38 kcal/mol). For R1 = CH3 and t‐Bu, the increasing barrier of the C2? C7 cyclization is higher than that for the C2? C6 cyclization because of the steric effect, so the increased barrier of the [4 + 2] cycloaddition is affected by such substituted electron‐releasing group. Moreover, the strong steric effect of R1 = t‐Bu would shift the C2? C7 cyclization to the [4 + 2] cycloaddition. On the other hand, for R1 = Ph, NH2, O?, NO2, and CN substituents, the barrier of the C2? C6 cyclization would be more diminished than the C2? C7 cyclization due to strong mesomeric effect; the reaction path of C2? C7 cyclization would also shift to the [4 + 2] cycloaddition. The solvation does not lead to significant changes in the potential‐energy surface of the reaction except for the more polar surrounding solvent such as dimethyl sulfoxide (DMSO), or water. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Comparison of 13C NMR of C = N bond chemical shifts δC(C = N) in substituted N‐(phenyl‐ethylene)‐anilines XArC(Me) = NArY (XPEAYs) with that in substituted N‐(benzylidene)‐anilines XArCH = NArY (XBAYs) was carried out. The δC(C = N) of 61 samples of XPEAYs were measured, and the substituent effect on their δC(C = N) were investigated. The results show the factors affecting the δC(C = N) of XPEAYs are quite different from that of XBAYs. A penta‐parameter correlation equation was obtained for the 61 compounds, which has correlation coefficient 0.9922 and standard error 0.12 ppm. The result indicates that, in XPEAYs, the inductive effects of substituents X and Y are major factors affecting the δC(C = N), while the conjugative effect of them have very little effect on the δC(C = N) and can be ignored. The substituent‐specific cross‐interaction effects between X and Y and between Me of C = N bond and substituent Y are important factors affecting the δC(C = N). Also, the excited‐state substituent parameter of substitute Y has certain contribution to the δC(C = N). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The hybrid organic–inorganic system Tetra‐ethyl‐ortho‐silicate functionalized with Octyl‐triethoxy‐silane, studied as protective coating for the preservation of historical glasses from the environmental weathering agents, has been characterized by Raman spectroscopy by monitoring the sol‐gel reactions over time through characteristic features in the spectrum. In particular, for the hydrolysis reaction the disappearance of the 653 cm−1 (Si‐O symmetric breathing) and 810 cm−1 (CH2 rocking in Si‐alkoxides) peaks and the growth of the 710 cm−1 band, because of hydrolyzed alkyl‐silane, and of the 881 cm−1 peak (ethanol C–C symmetric stretching) have been checked. Moreover, the condensation reaction can be tracked by the disappearance of the two main peaks of the alcohols at 816 and 881 cm−1, going along with the growth of the broad band between 250 and 500 cm−1 (Si–O–Si symmetric bending) and of the feature at 840 cm−1 (Si–O–Si stretching). At the end of the condensation process the Raman spectrum still displays spectral bands unique to the alkyl chain in Octyl‐triethoxy‐silane, in the 1330–1450 cm−1 and 2725–3000 cm−1 ranges. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The 13C NMR chemical shifts of six kinds of substituted benzylidene anilines, with different backbone conjugation length, have been used as a probe to investigate the long‐range transmission of substituent effects. In this context, it was found that for substituents Y at the aniline unit, the transmission of the inductive and conjugative effects depend on the chemical bond numbers n(Y) between Y and the imine carbon, and the parameters n(Y)?2σF(Y) and n(Y)?2σR(Y) are suitable to scale the corrected inductive and conjugative effects, respectively. However, for substituents X, the chemical bond numbers n(X) between X and the imine carbon influences only the transmission of inductive effects of X, and the n(X)?2σF(X) item is appropriate to evaluate the modified inductive effects of X. Similarly, Δσ(cor)2 was proposed to describe the transmitted effect of the cross‐interaction effect. With the parameters n(X)?2σF(X), σR(X), n(Y)?2σF(Y), n(Y)?2σR(Y), Δσ(cor)2, and δC(parent), the δC(C = N) values of 181 samples can be well correlated. The correlation coefficient is 0.9957, and the standard derivation is only 0.23 ppm. Moreover, the multi‐parameter correlation equation is predicted well the δC(C = N) of other 25 samples of designed conjugated benzylidene anilines. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Alcoholysis rates of unhindered benzenesulfonyl chlorides (X‐ArSO2Cl, X = H‐; 4‐Br‐; 4‐Me‐) are similar in methanol; the same behavior is also observed in ethanol, whereas the reactivity order in iso‐propanol is 4 Me‐ < H‐ < 4‐Br‐. On the other hand, alcoholysis of sterically hindered arenesulfonyl chlorides (X‐ArSO2Cl) (X = 2,4,6‐Me3‐3‐NO2‐; 2,6‐Me2‐4‐tBu‐; 2,4,6‐Me3‐; 2,3,5,6‐Me4‐; 2,4,6‐iPr3‐; 2,4‐Me2‐; 2,4,6‐(OMe)3‐) in all studied alcohols show a significant increase in reactivity, the so‐called positive steric effect. Most of the substrates showed a reaction order b ~ 2 with respect to the nucleophile in methanol and ethanol, and b ~ 3 in iso‐propanol. The correlation between reactivity and the Kirkwood function (1/ξ) gives negative sensitivity (U) for all systems. All substrates showed high sensitivity to media nucleophilicity that depends on ΣσX. Obtained results suggest the alcoholysis of benzenesulfonyl chlorides proceeds through SN2 mechanism where the transition state (TS) involves the participation of 2–3 alcohol molecules; such a TS can be cyclic, in the case of unbranched alcohols, or linear, for alcohols with bulkier hydrocarbon groups like iso‐propanol. To include the number of alcohol molecules playing such a role in the TS, the following terminology is proposed: cSN2sn for SN2 reactions involving n solvent molecules in a cyclic (c) TS, where “s” stands for the solvent and “n” is either the closest integer or half‐integer to the reaction order relative to the solvent or, in computational studies, the proposed number of solvent molecules taking part in the TS, whereas SN2sn is proposed when the TS is not cyclic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Reactions of ·OH/O .? radicals and H‐atoms as well as specific oxidants such as Cl2.? and N3· radicals have been studied with 2‐ and 3‐hydroxybenzyl alcohols (2‐ and 3‐HBA) at various pH using pulse radiolysis technique. At pH 6.8, ·OH radicals were found to react quite fast with both the HBAs (k = 7.8 × 109 dm3 mol?1 s?1 with 2‐HBA and 2 × 109 dm3 mol?1 s?1 with 3‐HBA) mainly by adduct formation and to a minor extent by H‐abstraction from ? CH2OH groups. ·OH‐(HBA) adduct were found to undergo decay to give phenoxyl type radicals in a pH dependent way and it was also very much dependent on buffer‐ion concentrations. It was seen that ·OH‐(2‐HBA) and ·OH‐(3‐HBA) adducts react with HPO42? ions (k = 2.1 × 107 and 2.8 × 107 dm3 mol?1 s?1 at pH 6.8, respectively) giving the phenoxyl type radicals of HBAs. At the same time, this reaction is very much hindered in the presence of H2PO ions indicating the role of phosphate ion concentration in determining the reaction pathway of ·OH adduct decay to final stable product. In the acidic region adducts were found to react with H+ ions. At pH 1, reaction of ·OH radicals with HBAs gave exclusively phenoxyl type radicals. Proportion of the reducing radicals formed by H‐abstraction pathway in ·OH/O .? reactions with HBAs was determined following electron transfer to methyl viologen. H‐atom abstraction is the major pathway in O .? reaction with HBAs compared to ·OH radical reaction. H‐atom reaction with 2‐ and 3‐HBA gave transient species which were found to transfer electron to methyl viologen quantitatively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A simple linear regression (Q equation) is devised to position solvolyses within the established SN2‐SN1 spectrum of solvolysis mechanisms. Using 2‐adamantyl tosylate as the SN1 model and methyl tosylate as the SN2 model, the equation is applied to solvolyses of ethyl, allyl, secondary alkyl and a range of substituted benzyl and benzoyl tosylates. Using 1‐adamantyl chloride as the SN1 model and methyl tosylate as the SN2 model, the equation is applied to solvolyses of substituted benzoyl chlorides in weakly nucleophilic media. In some instances, direct correlations with methyl tosylate were employed. Grunwald–Winstein l values and kinetic solvent isotope effects are also used to locate solvolyses within the spectrum of mechanisms. Product selectivities (S) for solvolyses at 50 °C of p‐nitrobenzyl tosylate in binary mixtures of alcohol–water and of alcohol–ethanol for five alcohols (methanol, ethanol, 1‐propanol and 2‐propanol and t‐butanol) are reported and show the expected order of solvent nucleophilicity (RCH2OH > R2CHOH > R3COH). The data support the original assignments establishing the NOTs scale of solvent nucleophilicity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Investigation of the relative reactivity of bonds in fullerenes will provide fundamental theory for the design of fullerene‐based materials. We have theoretically investigated the reactivity of the Diels–Alder (DA) cycloaddition of cis‐1,3‐butadiene to all types of bonds in C60 and C70 using the M06‐2X hybrid density functional theory (DFT) calculations (J. Phys. Org. Chem. 2012, 25 850–855) and have pointed out that the DA cycloadditions of cis and trans forms of 1,3‐butadiene to ethylene have a specially intimate relationship (J. Phys. Org. Chem. 2014, 27 652–660). For the aim of telling a whole story of the DA cycloaddition concerning C60 and C70, the DA cycloadditions of trans‐1,3‐butadiene to all types of bonds in C60 and C70 were explored at the same theoretical level as those of the cis‐1,3‐butadiene. The calculated results related with the trans‐ and cis‐1,3‐butadienes were compared. The potential energy curves of DA cycloadditions of trans‐ and cis‐1,3‐butadiene to C60 and C70 were discussed. The distortion–interaction energy model was employed to elucidate the origin of different reactivity of all kinds of C?C bonds. The solvent effects were examined using the continuum solvent model. These current results, along with our previous research, will help to obtain an overall view of the DA cycloadditions of 1,3‐butadiene to C60 and C70. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
B. L. Kuzin  D. I. Bronin 《Ionics》2001,7(1-2):142-151
The behavior of the electrode systems M,O2/O2 (M = porous Pd, Pt, A and dense In2O3; O2− = ZrO2-based single-crystal solid electrolyte) was studied by means of impedance measurements. The examination of the Pt,O2/O2− electrode system showed that the constant phase element (CPE) can be attributed to a nonuniform distribution of current at the electrode surface. It was observed that the CPE parameters n and B in the expression YCPE = B (jω)n may be related by B=(Cdl)n (RΩ)n-1, where Cdl is the double layer capacitance and RΩ the resistance of the electrolyte in the cell. Then, Cdl of the electrode - electrolyte interface could be determined. The specific Cdl of the oxidized noble metals and india electrodes is nearly one order of magnitude lower than Cdl of the electrodes in the metallic state. The Cdl value of all the electrodes studied depends little or is independent of temperature and oxygen pressure. It is concluded that the Helmholtz model of double layer structure does not contradict the Cdl behavior.  相似文献   

16.
The kinetics of the reaction of β‐substituted β‐alkoxyvinyl trifluoromethyl ketones R1O‐CR2?CH‐COCF3 ( 1a – e ) [( 1a ), R1?C2H5, R2?H; ( 1b ), R1?R2?CH3; ( 1c ), R1?C2H5, R2?C6H5; ( 1d ), R1?C2H5, R2?V?pNO2C6H4; ( 1e ), R1?C2H5, R2?C(CH3)3] with four aliphatic amines ( 2a – d ) [( 2a ), (C2H5)2NH; ( 2b ), (i‐C3H7)2NH; ( 2c ), (CH2)5NH; ( 2d ), O(CH2CH2)2NH] was studied in two aprotic solvents, hexane and acetonitrile. The least reactive stereoisomeric form of ( 1a – d ) was the most populated ( E‐s‐Z‐o‐Z ) form, whereas in ( 1e ), the more reactive form ( Z‐s‐Z‐o‐Z ) dominated. The reactions studied proceeded via common transition state formation whose decomposition occurred by ‘uncatalyzed’ and/or ‘catalyzed’ route. Shielding of the reaction centre by bulky β‐substituents lowered abruptly both k′ (‘uncatalyzed’ rate constant) and k″ (‘catalyzed’ rate constant) of this reaction. Bulky amines reduced k″ to a greater extent than k′ as a result of an additional steric retardation to the approach of the bulky amine to its ammonium ion in the transition state. An increase in the electron‐withdrawing ability of the β‐substituent increased ‘uncatalyzed’ k′ due to the acceleration of the initial nucleophile attack (k1) and ‘uncatalyzed’ decomposition of transition state (k2) via promoting electrophilic assistance (through transition state 8 ). The amine basicity determined the route of the reaction: the higher amine basicity, the higher k3/k2 ratio (a measure of the ‘catalyzed’ route contribution as compared to the ‘uncatalyzed’ process) was. ‘Uncatalyzed’ route predominated for all reactions; however in polar acetonitrile the contribution of the ‘catalyzed’ route was significant for amines with high pKa and small bulk. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate [C11H15NO2S] was synthesized by the Gewald method. Its single crystals were grown from an alcohol/ethyl acetate solution at 15 °C and characterized using IR and 1H‐NMR. These single crystals were irradiated for 72 h at 298 K by a 60Co gamma source with a dose speed of 0.864 kGy/h. After irradiation, electron spin resonance (ESR) measurements were carried out to study radiation‐induced radicals in the temperature range from 120 to 450 K. Additionally, for the single crystal, ESR angular dependencies were measured in the xy, xz and yz planes of the substance. This irradiated single crystal was analyzed based on the ESR spectra. Analysis of the spectra revealed that the radical was formed by a C–H bond fission at the carbon end of the substance. It was also observed that the color of the sample changed after irradiation. The hyperfine and g parameters were determined from the experimental spectra. It was inferred from these results that the hyperfine parameters and g value exhibited anisotropic behavior. The average values of these parameters were calculated as follows: g = 2.0088, AH1=H2 = 20.70 G, AH3=H4 = 10.80 G, AHa = 4.59 G, AHb = 3.24 G and, AN = 6.10 G. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Kinetic study has been performed to understand the reactivity of novel cationic gemini surfactants viz. alkanediyl‐α,ω‐bis(hydroxyethylmethylhexadecylammonium bromide) C16‐s‐C16 MEA, 2Br? (where s = 4, 6) in the cleavage of p‐nitrophenyl benzoate (PNPB). Novel cationic gemini C16‐s‐C16 MEA, 2Br? surfactants are efficient in promoting PNPB cleavage in presence of butane 2,3‐dione monoximate and N‐phenylbenzohydroxamate ions. Model calculation revealed that the higher catalytic effect of ethanol moiety of gemini surfactants (C16H33N+ C2H4OH CH3 (CH2)S N+ C2H4OH CH3C16H33, 2Br?, s = 4, 6) is due to their higher binding capacity toward substrate. This is in line with finding that binding constants for novel series of cationic gemini surfactants are higher than conventional cationic gemini (C16H33N+(CH3)2(CH2)SN+(CH3)2C16H33, 2Br?, s = 10, 12), cetyldimethylethanolammonium bromide and zwitterionic surfactants, i.e. CnH2n+1N+Me2 (CH2)3 SO3? (n = 10; SB3‐10). The fitting of kinetic data was analyzed by the pseudophase model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The sonochemical reduction of MnO4 to MnO2 in aqueous solutions was investigated as a function of alcohol concentration under Ar. The rate of MnO4 reduction initially decreased with increasing alcohol concentration, and then increased when the alcohol concentration was increased further. The concentrations at which the reduction rates were minimum depended on the hydrophobic properties of the added alcohols under ultrasonic irradiation. At low concentrations, the alcohols acted as OH radical scavengers; at high concentrations, they acted as reductant precursors: Rab, formed by abstraction reactions of the alcohols with sonochemically formed OH radicals or H atoms, and Rpy, formed by alcohol pyrolysis under ultrasonic irradiation. The results suggest that the reactivity order of the sonochemically formed reducing species with MnO4 at pH 7–9 is the sum of H2O2 and H > Rpy > Rab. The peak wavelengths of MnO2 colloidal solutions formed at high 1-butanol concentrations shifted to shorter wavelengths, suggesting the formation of small particles at high 1-butanol concentrations. The rates of sonochemical reduction of MnO2 to Mn2+ in the presence of 1-butanol were slower than that in the absence of 1-butanol, because the sonochemical formation of H2O2 and H, which act as reductants, was suppressed by 1-butanol in aqueous solutions.  相似文献   

20.
This paper reports about high reactivity of α‐silylamines in the reaction with CCl4. Unlike Et3N, α‐silylamines rapidly react with CCl4 upon irradiation with daylight to form α‐silylamine hydrochloride salts in 92–98% yields. The influence of structure of α‐silylamines and solvent on the degree of conversion was displayed. The interaction of α‐silylamines with CCl4 was studied by NMR, ESR, and IR spectroscopy. C‐centered radicals of α‐silylamines were detected by ESR spectroscopy with spin traps (MNP, ND, and PBN) in reaction mixtures in CH3CN and C6H6 and it show the radical character of this reaction. Both CH3CN and C6H6 serve as solvents as well as reagents for this reaction. A mechanism of an interaction between α‐silylamines and CCl4 is discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号