首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Crystal Structure of [Cr(NH3)6][Cr(NH3)2F4][BF4]2 The action of ammonium fluoride on a mixture of boron and chromium in a sealed Monel ampoule at 300 °C yields single crystals of [Cr(NH3)6][Cr(NH3)2F4][BF4]2. The crystal structure (tetragonal, P4/mbm, Z = 2, a = 1056.0(1), c = 781.7(1) pm; R1 = 0.0414; wR2 = 0.1087 for 411 reflections with I0 > 2σ(I)) contains [Cr(NH3)6]3+ and [Cr(NH3)2F4] octahedra and twice as many [BF4] tetrahedra that are arranged in a quadrupled super‐structure of the CsCl‐type of structure.  相似文献   

2.
N2H6(Sb2F11)2 was synthesized by the reaction of N2H6F2 with excess of SbF5 in anhydrous hydrogen fluoride (aHF). It crystallizes in the triclinic space group P$\bar{1}$ (No. 2) with a = 6.6467(3) Å, b = 8.3039(4) Å, c = 8.3600(5) Å, α = 76.394(5) o, β = 70.161(5) o, γ = 70.797(5) o, V = 405.90(4) Å3 at 150 K, Z = 2. When it is redissolved in aHF, it solvolysis with the release of SbF5 yielding N2H6(SbF6)2 which crystallizes in the monoclinic C2/c space group (No. 15) with a = 7.3805(3) Å, b = 12.3248(5) Å, c = 10.4992(4) Å, β = 92.218(4) o, V = 954.33(7) Å3 at 150 K, and Z = 8. No other phases were observed in crystallization products when different molar ratios of N2H6F2/SbF5 (1:1,2:3,1:3) in aHF were used as starting materials.  相似文献   

3.
A one‐dimensional aluminum phosphate, [NH3(CH2)2NH2(CH2)3NH3]3+ [Al(PO4)2]3—, has been synthesized hydrothermally in the presence of N‐(2‐Aminoethyl‐)1, 3‐diaminopropane (AEDAP) and its structure determined by single crystal X‐ray diffraction. Crystal data: space group = Pbca (no. 61), a = 16.850(2), b = 8.832(1), c = 17.688(4)Å, V = 2632.4(2)Å3, Z = 8, R1 = 0.0389 [5663 observed reflections with I > 2σ(I)]. The structure consists of anionic [Al(PO4)2]3— chains built up from AlO4 and PO4 tetrahedra, in which all the AlO4 vertices are shared and each PO4 tetrahedron possesses two terminal P=O linkages. The cations, which balances the negative charge of the chains, are located in between the chains and interact with the oxygen atoms through strong N—H···O hydrogen bonds. Additional characterization of the compound by powder XRD and MAS‐NMR has also been performed and described.  相似文献   

4.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

5.
The reactions of Au(OH)3, M2CO3 (M = Li, Na, Rb), and methanesulfonic acid at elevated temperatures in sealed glass ampoules lead to single crystals of M[Au(CH3SO3)4] (M = Li, Na, Rb). In the crystal structures of Li[Au(CH3SO3)4] (tetragonal, I$\bar{4}$ , Z = 2,a = 938.64(2) pm, c = 917.01(3) pm, V = 807.93(4) Å3) and Rb[Au(CH3SO3)4] (tetragonal, P$\bar{4}$ 21c, Z = 2, a = 946.7(1) pm,c = 889.9(1) pm, V = 797.6(2) Å3) the complex aurate anions are linked by the M+ ions in three dimensions. Contrastingly, in the structure of Na[Au(CH3SO3)4] (triclinic, P$\bar{4}$ , Z = 1, a = 540.04(2) pm,b = 863.75(2) pm, c = 973.29(3) pm, α = 72.694(2)°, β = 75.605(2)°, γ = 77.687(2)°, V = 415.05(2) Å3) the complex anions are connected into layers that are further connected by weak hydrogen bonds. The thermal decomposition of Li[Au(CH3SO3)4] was monitored up to 500 °C and leads in a multi‐step process to elemental gold and Li2SO4.  相似文献   

6.
The reaction of different stoichiometric amounts of Zn(NCS)2 with 3‐cyanopyridine in different solvents leads to the formation of several new coordination compounds, which were structurally characterized and investigated for their thermal behavior. In Zn(NCS)2(3‐cyanopyridine)4 ( 1 ) and Zn(NCS)2(3‐cyanopyridine)2(H2O)2 · (3‐cyanopyridine)2 ( 2 ) the zinc cations are octahedrally coordinated by two terminally N‐bonded thiocyanate anions and four 3‐cyanopyridine ( 1 ) or two 3‐cyanopyridine and two water molecules ( 2 ) within slightly distorted octahedra. Zn(NCS)2(3‐cyanopyridine)2 ( 3 ) and Zn(NCS)2(3‐cyanopyridine)2 · (H2O)0.5 ( 3‐H2O ) also form discrete complexes but with tetrahedrally coordinated Zn cations. Upon heating compound 1 decomposes without the formation of any intermediate compound. In contrast, compound 2 loses the water molecules in the first step and transforms into compound 1 . Surprisingly, upon further heating a second TG step is observed, in which compound 3 is formed as an intermediate, which is not observed if compound 1 is heated directly. The tetrahedral complex 3 melts leading to the formation of an amorphous phase. If the hemihydrate 3‐H2O is heated, it transforms into 3 via melting and crystallization but there are hints that a metastable phase might form as intermediate on water removal.  相似文献   

7.
Calcium biuretooxophosphate Ca[PO2(NH)3(CO)2]2 was synthesized by ion exchange reaction in aqueous solution. The crystal structure of the salt was elucidated by single‐crystal X‐ray diffraction. Anionic 1‐phospha‐2, 4, 6‐s‐triazine rings exhibiting a half‐chair conformation act as monodentate ligands for the calcium ions. A 3D network is formed by the resulting CaO6 octahedrons together with the anionic rings interconnected by hydrogen bonds. Beside the crystal structure, FTIR and photoluminescence spectra of calcium biuretooxophosphate are discussed. The thermal behavior of the salt is examined by means of temperature‐dependent powder X‐ray diffraction measurements and combined TG and DTA analyses.  相似文献   

8.
Pale blue, lath‐shaped single crystals of K2NdP2S7 (≡ K4Nd2[PS4]2[P2S6]; monoclinic, P21/n, a = 904.76(8), b = 677.38(6), c = 1988.7(2) pm, β = 97.295(5)°, Z = 2) are obtained by the reaction of Nd, S and P2S5 with an excess of KCl as a flux in evacuated silica tubes at 750 °C (7 d) which should produce Nd[PS4] instead. Beside isolated [PS4]3– tetrahedra, the crystal structure contains discrete ethane‐analogous [P2S6]4– (≡ [S3P–PS3]4–) units in staggered conformation with tetravalent phosphorus cations and a P–P distance of 219 pm. The two crystallographically different potassium cations show coordination numbers of nine and ten in the shape of distorted mono‐ and bicapped square antiprisms. Finally, the Nd3+ cations are surrounded by eight sulfur atoms arranged as (uncapped) square antiprisms. The entire structure is dominated by (K1)+ containing {(Nd2[PS4]2[P2S6])4–} layers parallel (101) which are three‐dimensionally interconnected by (K2)+ cations.  相似文献   

9.
Bis(disulfide)bridged Nb(+4) cluster halide complexes [Nb2S4X8]4– (X = Cl, Br) were prepared by acid hydrolysis of [Nb2S4(NCS)8]4– in concentrated aqueous HCl or HBr, solution from which they can be isolated as double salts Cs5[Nb2S4X8]X (X = Cl, 1 ; X = Br, 2 ). The crystal structures of 1 and 2 were determined. The isolation and X-ray structure of oxonium salt (H3O)5 [Nb2S4Cl8]Cl ( 3 ) is also reported. 1 – 3 contain new [Nb2S4X8]4– anions which can also be viewed as excised building blocks of polymeric solids NbS2X2. The extra halogen resides in the center of octahedron formed by six Cs+ or H3O+ ions. All the three salts are isostructural and crystallize in tetragonal space group Immm with the following parameters: a = 10.269(2), b = 16.343(2), c = 7.220(1) Å for 1 , a = 10.934(1), b = 16.613(2), c = 7.470(1) Å for 2 , a = 9.639(1), b = 16.031(1), c = 7.071(1) Å for 3 . The parameters of the Nb2S4 core are only slightly affected by the change from Cl to Br.  相似文献   

10.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

11.
用乙二胺作模板剂在水热条件下合成出一个新的三维开放骨架结构的亚磷酸铟[In2(HPO3)4]·(NH3CH2CH2NH3)(1), 并对其晶体结构进行了测定和表征.  相似文献   

12.
We report the synthesis, crystal structures, and spectral, thermal, and magnetic properties of a family of metal–organic perovskite ABX3, [C(NH2)3][MII(HCOO)3], in which A=C(NH2)3 is guanidinium, B=M is a divalent metal ion (Mn, Fe, Co, Ni, Cu, or Zn), and X is the formate HCOO?. The compounds could be synthesized by either diffusion or hydrothermal methods from water or water‐rich solutions depending on the metal. The five members (Mn, Fe, Co, Ni, and Zn) are isostructural and crystallize in the orthorhombic space group Pnna, while the Cu member in Pna21. In the perovskite structures, the octahedrally coordinated metal ions are connected by the antianti formate bridges, thus forming the anionic NaCl‐type [M(HCOO)3]? frameworks, with the guanidinium in the nearly cubic cavities of the frameworks. The Jahn–Teller effect of Cu2+ results in a distorted anionic Cu–formate framework that can be regarded as Cu–formate chains through short basal Cu? O bonds linked by the long axial Cu? O bonds. These materials show higher thermal stability than other metal–organic perovskite series of [AmineH][M(HCOO)3] templated by the organic monoammonium cations (AmineH+) as a result of the stronger hydrogen bonding between guanidinium and the formate of the framework. A magnetic study revealed that the five magnetic members (except Zn) display spin‐canted antiferromagnetism, with a Néel temperature of 8.8 (Mn), 10.0 (Fe), 14.2 (Co), 34.2 (Ni), and 4.6 K (Cu). In addition to the general spin‐canted antiferromagnetism, the Fe compound shows two isothermal transformations (a spin‐flop and a spin‐flip to the paramagnetic phase) within 50 kOe. The Co member possesses quite a large canting angle. The Cu member is a magnetic system with low dimensional character and shows slow magnetic relaxation that probably results from the domain dynamics.  相似文献   

13.
Two Mercuric Ammoniates: [Hg(NH3)2][HgCl3]2 and [Hg(NH3)4](ClO4)2 [Hg(NH3)2][HgCl3]2 ( 1 ) is obtained by saturating an equimolar solution of HgCl2 and NH4Cl with Hg(NH2)Cl at 75 °C. 1 crystallizes in the orthorhombic space group Pmna with a = 591.9(1) pm, b = 800.3(1) pm, c = 1243.3(4) pm, Z = 2. The structure consists of linear cations [Hg(NH3)2]2+ and T‐shaped anions [HgCl3]. The coordination sphere of mercury is ?effectively”? completed to compressed hexagonal bipyramids and distorted octahedra, respectively. Single crystals of [Hg(NH3)4](ClO4)2 ( 2 ) are obtained by passing gaseous ammonia through a solution of mercuric perchlorate, while the solution was cooled to temperatures below 10 °C. 2 crystallizes in the monoclinic space group P21/c with a = 791.52(9) pm, b = 1084.3(2) pm, c = 1566.4(2) pm, β = 120.352(1)°, Z = 4. The structure consists of compressed [Hg(NH3)4]2+ tetrahedra and perchlorate anions. The packing of the heavy atoms Hg and Cl is analogous to the baddeleyite (α‐ZrO2) type of structure.  相似文献   

14.
Reaction of Mn(NCS)2 with 4-picoline (4-methylpyridine) leads to the formation of [Mn(NCS)2(4-picoline)4] · 0.67 · 4-picoline · 0.33 · H2O ( 1 - Mn ) reported in literature, Mn(NCS)2(4-picoline)2(H2O)2 ( 2-Mn/H2O ), and of [Mn(NCS)2(4-picoline)2]n ( 2-Mn/I ). 1-Mn and 2-Mn/H2O consist of discrete complexes, in which the metal cations are octahedrally coordinated, whereas in 2-Mn/I the metal cations are linked by pairs of μ-1,3-bridging thiocyanate anions into corrugated chains. Measurements using thermogravimetry and differential scanning calorimetry as well as temperature dependent X-ray powder diffraction on 1-Mn and 2-Mn/H2O reveal that upon heating both compounds transform into [Mn(NCS)2(4-picoline)]n ( 3-Mn ) via 2-Mn/I as intermediate. 3-Mn shows a very rare chain topology in which the metal cations are linked by μ-1,3,3 (N,S,S) coordinating anionic ligands which was never observed before with MnII. From these investigations there is no hint that a further modification of 2-Mn can be prepared as recently observed for [M(NCS)2(4-picoline)2]n (M = Fe, Cd) and such a form is also not available if the metastable forms of the FeII or CdII compounds were used as template during thermal decomposition. Magnetic investigations on 2-Mn/H2O show only paramagnetic behavior, whereas for 2-Mn/I antiferromagnetic ordering is observed. Finally, the crystal structure of Mn(NCS)2 was determined from XRPD data, which shows that it is strongly related to that of 3-Mn .  相似文献   

15.
Synthesis and Crystal Structure of Ammonium Tetraamminelithium Amidotrithiophosphate‐Ammonia(1/1)(NH4)[Li(NH3)4][P(NH2)S3]·NH3 Colourless crystals of (NH4)[Li(NH3)4][P(NH2)S3]·NH3 were prepared by the reduction of P4S10 with a solution of lithium in liquid ammonia. The X‐ray structure determination shows them to contain the pseudo‐tetrahedral amidotrithiophosphate anion [P(NH2)S3]2− (point group CS), which is the hitherto unknown final member of a series of previously characterized amidothiophosphates. The ammonium ion and the ammonia molecule of solvation form an diamminehydrogen(1+)‐ion N2H7+ with a short, nearly linear hydrogen bond of 2.864(3) Å.  相似文献   

16.
Potassium Triamidostannate(II), K[Sn(NH2)3] – Synthesis and Crystal Structure Rusty‐red crystals of K[Sn(NH2)3] were obtained by the reaction of SnBr2 and KNH2 in a 1 : 3 molar ratio in liquid ammonia at 233 K in the form of platelets. The structure was determined from single crystal X‐ray diffractometer data: Space group P3; Z = 2; a = 6.560(1) Å, c = 7.413(2) Å. The structure contains trigonal pyramidal complex anions [Sn(NH2)3] and potassium cations. These ions are arranged to one another following the motif of a strongly distorted hexagonal close packing of sequence A(Sn) B(Sn) A′(K) B′(K) …  相似文献   

17.
The heteroleptic neutral tri‐tert‐butoxysilanethiolate of cobalt(II) incorporating ammonia as additional ligand ( 1 ) has been prepared by the reaction of a cobalt(II) ammine complex with tri‐tert‐butoxysilanethiol in water. Complex 1 , dissolved in hexane, undergoes oxidation in an ammonia saturated atmosphere to the ionic cobalt(III) compound 2 . Molecular and crystal structures of 1 and 2 have been determined by single crystal X‐ray structural analysis. 1 forms a dimeric molecule [Co{μ‐SSi(OBut)3}{SSi(OBut)3}(NH3)]2 with a folded central Co2S2 ring and distorted tetrahedral ligand arrangement at both CoII atoms (CoNS3 core). The product 2 is composed of the octahedral CoIII complex cation [Co{SSi(OBut)3}2(NH3)4]+ and the tri‐tert‐butoxysilanethiolate anion. Within the crystal two pairs of ions interact by hydrogen bonds forming well separated entities. 1 and 2 are the first structurally characterized cobalt thiolates where metal is also bonded to ammonia and 2 is the first cobalt(III) silanethiolate.  相似文献   

18.
ACl3 · 2NH3 – a Compound with the Crystal Structure of a Tetraammine Dichloroaluminiumtetrachloroaluminate – [AlCl2(NH3)4]+[AlCl4]? Ammoniates of aluminiumchloride AlCl3 · xNH3 are in discussion as starting materials for the synthesis of aluminiumnitride. Therefore the reactions of melts of monoamminealuminiumchloride with ammonia were investigated. They react at 150°C within 10 min with one mole of ammonia to the diammoniate, [AlCl2(NH3)4]+[AlCl4]?. The pure compound can be obtained by sublimation at 200°C in vacuumline apparatus. X-ray structure determination on [AlCl2(NH3)4]+[AlCl4]? was carried out: see “Inhaltsübersicht”.  相似文献   

19.
Air‐stable, orange‐red single crystals of [{ReN(PMe2Ph)3}{ReO3N}]2 are formed when mer‐[ReNCl2(PMe2Ph)3] reacts with strong bases in MeOH. The resulting centrosymmetric tetranuclear complex contains each two {ReN(PMe2Ph)3}2+ and {ReO3N}2? building blocks. They are connected by two oxygen and two nitrogen atoms giving an almost planar {Re4O2N2} ring. The Re–N–Re bridges are only slightly bent (175.2(2)°), while the Re–O–Re angles are 160.9(1)°. The coordination environment of the rhenium atom in the nitridotrioxorhenate(VII) anion is a slightly distorted tetrahedron with O–Re–O and O–Re–N angles between 108.7(1)° and 111.3(1)°.  相似文献   

20.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号