首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper carries the results of an evaluation of various materials, which may be used to aid in the release of a fused bead from its mould during a wavelength‐dispersive x‐ray fluorescence (WD‐XRF) measurement. The following bead‐releasing agents were studied: NaI, LiBr, NH4I, and LiI. Each was incorporated in different quantities, as a solid and/or in an aqueous solution, together with a flux, into samples of ceramic raw materials. Release agent interference in the WD‐XRF measurement was analysed, and the optimum quantity of release agent needed to obtain suitable beads for WD‐XRF measurement was determined. The best results were obtained for LiI, which yielded reproducible beads without significant interference in the WD‐XRF measurement when a relatively small quantity (0.11 LiI g/bead) was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《X射线光谱测定》2004,33(6):421-430
The present study was undertaken to establish a methodology for characterizing ceramic oxide refractory materials, as no detailed information could be found in the literature on this point. The following refractories were analysed: two silica, one alumina, one silica–alumina, two zirconium, three chrome and three magnesia refractories. X‐ray fluorescence (XRF) spectrometry was used for chemical characterization and x‐ray diffraction (XRD) for phase analysis. Phases were determined because of their influence on the end properties of refractory materials. Five analytical programmes for XRF analysis and an XRD analysis method were established. We optimized sample preparation in the form of beads for the XRF measurement by determining the most appropriate sample/flux ratio for each type of refractory. Calibration and validation standards were prepared from mixtures of reference materials, owing to the scarcity of refractory reference materials. The chemical and phase composition of different ceramic oxide refractory bricks was determined and related to the deterioration of these refractories in industrial service, because refractories with a similar chemical composition and different crystalline phases can exhibit different properties. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In order to settle the provenance of a set of ancient ceramic shards, the elemental composition data acquired are usually treated by multivariate analysis techniques. The quantitative X‐ray fluorescence (XRF) analysis is an appropriate tool if it is possible to grind ceramics and analyze a sample that is representative of the object. If we deal particularly with well‐preserved objects, we are often not allowed to sample them. Moreover, moving these objects from museum could be unfeasible as well. The aim of this work is to evaluate if spot XRF analysis on integral objects is adequate to classify row clay provenance even if ceramics is not an intrinsically homogeneous material. So, we performed measurements on a set of Etruscan fine ware already classified according to the archaeological, chemical and mineralogical examination. For each sample, several measurement points in polished areas were considered for XRF analyses, allowing a correct provenance classification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This article describes a methodology for the analysis of minor and trace elements in petroleum cokes by wavelength‐dispersive X‐ray fluorescence (WD‐XRF) spectrometry. The methodology was developed in order to have a rapid and reliable control method of these elements, because they determine coke end uses. There are a number of standard methods of chemical analysis by WD‐XRF or inductively coupled plasma atomic emission spectrometry (ICP‐OES) techniques. However, the standards that use WD‐XRF measurement give detection limits (LD) above 10 mg·kg?1 and only analyse a few elements of interest, whereas the ICP‐OES method requires extensive sample handling and long sample preparation times, with the ensuing errors. In order to improve the method described in the standard ASTM D6376 and reach the LD and quantification limits (LQ) required, the different stages of the process, ranging from sample preparation to measurement conditions: analytical line, detector, crystal, tube power, use of primary beam filters, and measurement time, were optimised. The samples were prepared in the form of pressed pellets, under conditions of high cleanliness of the mills, crushers, presses, and dies, and of the laboratory itself. The following reference materials were used in measurement calibration and validation: SRM 1632c, SRM 2718, SRM 2719, SRM 2685b, AR 2771, AR 2772, SARM 18, SARM 19, and CLB‐1. In addition, a series of materials were analysed by WD‐XRF and ICP‐OES, and the results were compared. The developed methodology, which uses WD‐XRF, is rapid and accurate, and very low LD and measurement uncertainties were obtained for the following elements: Al, Ba, Ca, Cr, Cu, Fe, Ge, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, and Zn. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we discuss approaches to prepare solid samples for X‐ray fluorescence spectrometry (XRF). Although XRF can be used to analyze major and minor elements in various solid samples including powders and grains without dissolution techniques, to obtain reliable XRF results, the prepared sample must meet certain criteria related to homogeneity, particle size, flatness, and thickness. The conditions are defined by the analytical depth of fluorescent X‐rays from analytes, and the analytical depth can be estimated from the X‐ray absorption related to the energy of each X‐ray and the composition and density of the sample. For example, when the sample flatness and particle size are less than the analytical depth and the sample possesses homogeneity within a depth less than the analytical depth, the XRF results are representative of the entire sample. Furthermore, an appropriate sample thickness that is larger than the analytical depth or constant can prevent changes in fluorescent X‐ray intensity with variations in sample thickness. To obtain accurate and reproducible measurements, inhomogeneous solid samples must be pulverized, homogenized, and prepared as loose powder, powder pellets, or glass beads. This paper explains the approaches used to prepare solid samples for XRF analysis based on the analytical depths of fluorescent X‐rays. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the chemical characterisation of silicon carbide‐based grinding tools. These are among the most widely used grinding tools in the ceramic sector, and instruments are required that enable the grinding tool quality to be controlled, despite the considerable complexity involved in determining grinding tool chemical composition. They contain components of quite different nature, ranging from the silicon carbide abrasive to the resin binder. To develop the analysis method, grinding tools containing silicon carbide with different grain sizes were selected from different tile polishing stages. To develop the grinding tool characterisation method, the different measurement process steps were studied, from sample preparation, in which different milling methods (each appropriate for the relevant type of test) were used, to the optimisation of the determination of grinding tool components by spectroscopic and elemental analyses. For each technique, different particle sizes were used according to their needs. For elemental analysis, a sample below 150 µm was used, while for the rest of the determinations a sample below 60 µm was used. After milling, the crystalline phases were characterised by X‐ray powder diffraction and quantified using the Rietvel method. The different forms of carbon (organic carbon from the resin, inorganic carbon from the carbonates and carbon from the silicon carbide) were analysed using a series of elemental analyses. The other elements (Si, Al, Fe, Ca, Mg, Na, K, Ti, Mn, P and Cl) were determined by wavelength‐dispersive X‐ray fluorescence spectrometry, preparing the sample in the form of pressed pellets and fused beads. The chemical characterisation method developed was validated with mixtures of reference materials, as there are no reference materials of grinding tools available. This method can be used for quality control of silicon carbide‐based grinding tools. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Kidney stone is the most painful and prevalent urological disorder of the urinary system throughout the world. Thus, analysis of kidney stones is an integral part in the evaluation of patents having stone disease. Spectroscopic investigations of stones provide an idea about the pathogenesis of stones for its better cure and treatment. Hence, the present work targets multispectroscopic investigations on kidney stones using Fourier transform infrared (FTIR) and wave dispersive X‐ray fluorescence (WD‐XRF) spectroscopy which are the most useful analytical methods for the purpose of bio‐medical diagnostics. In the present study, FTIR spectral method is used to investigate the chemical composition and classification of kidney stones. The multicomponents of kidney stones such as calcium oxalate, hydroxyl apatite, phosphates, carbonates, and struvite were investigated and studied. Qualitative and quantitative determination of major and trace elements present in the kidney stones was performed employing WD‐XRF spectroscopy. The wide range of elements determined in the kidney stones were calcium (Ca), magnesium (Mg), phosphorous (P), sodium (Na), potassium (K), chlorine (Cl), sulfur (S), silicon (Si), iodine (I), titanium (Ti), iron (Fe), ruthenium (Ru), zinc (Zn), aluminum (Al), strontium (Sr), nickel (Ni), copper (Cu), and bromine (Br). For the first time, ruthenium was detected in kidney stone samples employing WD‐XRF in very low concentration. Our results revealed that the presence and relative concentrations of trace elements in different kinds of stones are different and depend on the stone types. From the experiments carried out on kidney stones for trace elemental detection, it was found that WD‐XRF is a robust analytical tool that can be useful for the diagnosis of urological disorders. We have also compared our findings with the results reported using XRF technique. The results obtained in the present paper show interesting prospects for FTIR and WD‐XRF spectrometry in nephrolithiasis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Energy‐dispersive X‐ray fluorescence (XRF) is an important tool used in routine elemental analysis of atmospheric particulate matter (PM) samples collected on polytetrafluoroethylene (PTFE) membrane filters. The method requires calibration against thin‐film standards of known elemental masses commonly obtained from commercial suppliers. These standards serve as a convenient and widely accepted interlaboratory reference but can differ significantly from samples in their chemical composition, substrate, and geometry. These differences can introduce uncertainties regarding the absolute accuracy of the calibration for atmospheric samples. Continuous elemental records of the US Interagency Monitoring of Protected Visual Environments (IMPROVE) PM monitoring network extend back to 1988. Evaluation of long‐term concentration trends and comparison with other networks demand a calibration that is accurate and precise compared with the uncertainty of the XRF measurement itself. We describe a method to prepare sulfur reference materials that are optimized for calibration of XRF instruments used to analyze IMPROVE PM samples. The reference materials are prepared by using the atmospheric form of the element, by reproducing the sample geometry, and by using the same substrate as in samples. Our results show that stable, pure, anhydrous, and stoichiometric deposits are collected onto the filter substrates, and furthermore, that the reference material masses are accurate and have acceptable uncertainty in the measurement range. The XRF response of the sulfur reference materials is similar to other commercial standards and is linear in the measurement range, and the slope of the multipoint calibration curve has very low uncertainty. These reference materials are valid for the calibration of XRF systems, and they bring improved transparency and credibility to the IMPROVE calibration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
采用高纯HNO3为氧化剂代替传统的氧化剂,以GeO2为玻璃化试剂,建立了一种简单、高效的硫化物熔融玻璃片的前处理方法。XRF和LA-ICPMS分析结果表明,相对于粉末压片法,熔片法制备的样品具有更好的均一性和可靠性。3种硫化物国家一级标准物质的XRF和LA-ICPMS主次量元素(Si,Al,Fe,Mg,K,Ca,Na,Mn,Cu,Zn)分析测试结果均与推荐值相吻合(Ti缺少推荐值),测定误差都在允许范围内,XRF三次熔片测试结果的精密度RSD<5.6%;LA-ICPMS 15次测试结果精密度RSD<3%。表明建立的硫化物熔融玻璃片的前处理方法可较好的应用于XRF和LA-ICPMS分析硫化物中的主次量元素。  相似文献   

10.
In this article, a methodology for the wavelength dispersive X‐ray fluorescence analysis of corrosion residues is described. Corrosion residues are generally composed of elements that are, total or partially, in a reduced state. Therefore, to prepare fused beads to be measured by wavelength dispersive X‐ray fluorescence, it is necessary to oxidize species and to avoid any analyte loss, as sulfur, which is present in residues composition. The combination of an oxidizing agent (LiNO3) and a flux (Li2B4O7 + LiBO2), at a mass ratio residue : oxidizing agent : flux of 1:5:12, is demonstrated to be suitable for the quantitative retention of sulfur in the sample preparation. The addition of silica to the mixture (residue : oxidizing agent : flux) for the formation of homogeneous fused beads is also studied. The optimal parameters for the sample preparation are as follows: A temperature of 600 °C for 15 min for the oxidation process and a fusion temperature of 950 °C for fused beads preparation. The quantitative retention of sulfur in the entire process was validated by an independent method, combustion and infrared detection, and analyzation reference materials. Moreover, minor and major elements (Al, Ca, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, S, and Ti) present in corrosion residues were simultaneously measured with low uncertainty. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The chemical characterisation of very small‐sized samples is often of major interest in forensic analysis, studies of artworks, particulate matter on filters, raw materials impurities, and so on, although it generally poses considerable problems owing to the difficulty of obtaining precise and accurate results. This study was undertaken to develop a set of methods for the chemical characterisation of very small‐sized samples by wavelength‐dispersive X‐ray fluorescence. To conduct the study, sample preparation (as beads and pellets) and measurement conditions were optimised to reach the necessary detection and quantification limits and to obtain the appropriate measurement uncertainty for characterising the types of materials involved. The measurements were validated by using reference materials. Three test methods were developed. In two methods, the samples were prepared in the form of beads (one method being for geological materials and the other for the analysis of nongeological materials such as particulate matter on filters, glasses, frits, and ceramic glazes and pigments). In the third method, the samples were prepared in the form of pellets for the analysis of volatile elements in geological materials. In the three methods, detection limits, quantification limits and measurement uncertainties were obtained similar to those found when a bead or pellet is prepared by the usual methods from 0.5 g sample. However, in this study, sample size was between 30 and 40 times smaller in the case of beads and 100 times smaller in the case of pellets, thus broadening the range of possible wavelength‐dispersive X‐ray fluorescence applications in the chemical characterisation of materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
《X射线光谱测定》2005,34(1):19-27
Quantitative µ‐XRF analysis based on standardless calibration is limited by the lack of information on the shape of the excitation spectrum resulting from using capillary lenses. The measurement of radiation scattered from a sample was used in combination with Monte Carlo simulation of radiation transport to estimate the energy spectral distribution of the excitation radiation. Further, a standardless calibration based on the fundamental parameter method implemented in the IAEA‐QXAS software package was carried out and verified for glass and fused ore certified reference materials. The accuracy and repeatability achieved are reported. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The elemental composition of discrete powdered sediment samples can be measured by the energy‐dispersive X‐ray fluorescence (XRF) system that is installed in XRF core scanners. Because an appropriate sample carrier for powdered samples is currently not available, for example, for the ITRAX XRF core scanner, such a carrier is presented in this technical note. The designed sample carrier can hold 30 sample cups with a volume of 0.88 cm3 each. A maximum of 5 sample carriers, that is, 150 samples, can be measured in one run. The sample cups and carriers are optimized for a measurement procedure with a step size of 5 mm and variable count times up to 100 s per sample. With this setting, data are collected from an area of 100 mm2 in the center of the sample thereby ensuring a good representativeness of the signal because potential sample inhomogeneity is accounted for. Because the described sample carrier system allows rapid element analyses of discrete powdered environmental samples with an XRF core scanner, it may in some cases represent a time‐ and cost‐efficient alternative to conventional XRF analyses.  相似文献   

14.
《X射线光谱测定》2004,33(4):294-300
‘Semi‐quantitative’ analytical procedures are becoming more and more popular. Using such procedures, the question of the accuracy of results arises. The accuracy of an analytical procedure depends to a great extent on spectral resolution, counting statistics and matrix correction. Two ‘semi‐quantitative’ procedures are compared with a quantitative analytical program. Using a laboratory‐based wavelength‐dispersive x‐ray fluorescence (WD‐XRF) spectrometer and a portable energy‐dispersive x‐ray fluorescence (ED‐XRF) spectrometer, 28 different nickel‐base alloy Certified Reference Materials (CRMs) were analyzed. Line interferences and inaccurate matrix correction are reasons for deviations from the reference value. As the comparison shows, ‘semi‐quantitative’ analyses on the WD‐XRF spectrometer can be accepted as quantitative determinations. The investigations show that the results obtained with the portable ED‐XRF spectrometer do not meet the quality requirements of laboratory analysis, but they are good enough for field investigations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Archaeological finds of Neolithic to Iron Age pottery show clay potsherds characterized by red cord‐markings. The items date back from 5500 to 1500 B.P. To better understand temporal changes in the provenance of raw‐material sources, and the nature of materials used in the red colorant and ceramic bodies, micro‐Raman spectroscopy, X‐ray diffraction analysis (XRD), and micro X‐ray florescence spectroscopy (μXRF) were applied to 29 red‐coated potsherd samples found at twelve archaeological sites across Taiwan. The techniques identified the chemical and mineralogical composition of the red coatings and ceramic bodies as well as the production methods of ancient potters. Eighteen mineral phases were identified from the Raman spectra, including hematite, α‐quartz, and anatase. Feldspar, rutile, pyroxenes, calcite, gypsum, amorphous carbon, and graphite were also detected. XRD measurements, and μXRF analyses were used as complementary techniques to obtain mineral and chemical compositions. Hematite, anatase, calcite, plagioclase feldspar, and illite were present in potsherds, suggesting pottery produced from illitic clays fired at less than 850 °C under oxidizing conditions. Results further suggest that raw materials were sourced from or near local volcanic rock areas, and more broadly from metamorphic or sedimentary rocks and clays. Chemically, raw materials used for red coatings are different to those of the ceramic bodies. Objects from most sites used the same raw material sources; however, some sites contain objects made from changing sources over time. Pot coatings exhibit polygonal cracks, and loosened cementation strongly suggesting that finely processed moist clays were fired to a biscuit form with no second stage firing process. The non‐destructive Raman experiments identified and characterized mineral phases, which helped understand manufacturing techniques. Overall the multi‐technique approach gave extensive information on the finds, helping to differentiate raw material sources and production technologies. This approach is an important and effective method for investigating archaeological finds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
X射线荧光光谱法测定工业硅中铁、铝、钙   总被引:9,自引:3,他引:6  
通过压片法制备样片,用X射线荧光光谱法测量工作硅中铁,铝,钙,探讨了样片制备条件,并通过加入粘接剂提高了样片牢固度,用经验系数法进行元素间增强和吸收校正,经对样品制备精密度及测量准确度分析,X射线荧光光谱法测量准确度和精密度能满足传统化学法要求。  相似文献   

17.
An analytical study is carried out to optimize X‐ray fluorescence (XRF) and flame atomic absorption spectrometry (FAAS) quantitative analysis of Zn, Pb, and S in ZnO samples commonly used to obtain industrial ceramic enamels. Pb and S in the raw materials often contaminate ZnO and are very detrimental in industrial applications. Thus, very accurate analytical determination of these elements in ceramic samples is extremely important. First of all, a mineralogical study by X‐ray diffraction (XRD) on the different components in these raw materials and the materials produced during the firing process is performed in order to establish the mineral forms in a reference sample for analysis by XRF spectrometry. The working conditions are optimized for XRF multielemental analysis, using the sample in the form of pellets, due to high loss on ignition (LOI) values. The preparation of suitable standards and working conditions for FAAS analysis have also been optimized. The content of these elements was determined by FAAS for the reference sample and several samples for industrial use, and the results were compared with those obtained by XRF. Comparison of the results obtained from XRF and FAAS analysis of Pb and Zn show more accurate values for FAAS. For ZnO, an accuracy of 0.11% with ±0.1% precision by FAAS and 0.46% accuracy with ±0.2% precision by XRF are found. For PbO, 1.06% accuracy and ±0.06% precision using FAAS and 5.6% accuracy and ±0.35% precision by XRF were found. For SO3 determined only by XRF, accuracy was 4.76% with ±0.25% precision. These values are highly satisfactory given that these two elements are only found in small proportions.  相似文献   

18.
《X射线光谱测定》2003,32(2):129-138
A risk assessment study of the air quality in the surrounding of roads covered with slags coming from the non‐ferrous metal industry was performed. A monitoring campaign was carried out at three locations in Flanders by collecting the PM10 fraction and the total suspended particulates (TSP) of the airborne dust particles, entrapping heavy metals, on membrane filters. The heavy metal concentration on the dust filters was determined by wavelength‐dispersive x‐ray fluorescence (WD‐XRF) spectrometry. The XRF calibration curves were set up with filter standards prepared in the laboratory using an aerosol‐generated loading system. The acquired WD‐XRF results were confirmed by inductively coupled plasma atomic emission spectrometric (ICP‐AES) measurements after acid digestion on a selected number of filters. Electron probe microanalysis (EPMA) confirmed that aerosol‐loaded filter standards and dust filters with a concentration level of the analyzed element below 3300 ng cm?2 were homogeneously distributed. Dust filters with higher concentrations, and especially filters loaded with the TSP fraction, reflected an inhomogeneous distribution of the analyzed element on the filter. The WD‐XRF analytical results acquired in the monitoring campaign revealed that the concentration of Pb on the dust filters never exceeded the immission standard (yearly average) of 2000 ng m?3. It can be stated that the impact on human health is limited and can still be reduced by covering the polluted roads with a layer of asphalt. Further evaluation of soil and water samples from the nearby surroundings reveals that the heavy metal content in the slags makes an important contribution to environmental pollution, especially the contamination of groundwater. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The integration of microfluidic devices with micro X‐ray fluorescence (micro‐XRF) spectrometry offers a new approach for the direct characterization of liquid materials. A sample presentation method based on use of small volumes (<5 µl) of liquid contained in an XRF‐compatible device has been developed. In this feasibility study, a prototype chip was constructed, and its suitability for XRF analysis of liquids was evaluated, along with that of a commercially produced microfluidic device. Each of the chips had an analytical chamber which contained approximately 1 µl of sample when the device was filled using a pipette. The performance of the chips was assessed using micro‐XRF and high resolution monochromatic wavelength dispersive X‐ray fluorescence, a method that provides highly selective and sensitive detection of actinides. The intended application of the device developed in this study is for measurement of Pu in spent nuclear fuel. Aqueous solutions and a synthetic spent fuel matrix were used to evaluate the devices. Sr, which has its Kα line energy close to the Pu Lα line at 14.2 keV, was utilized as a surrogate for Pu because of reduced handling risks. Between and within chip repeatability were studied, along with linearity of response and accuracy. The limit of detection for Sr determination in the chip is estimated at 5 ng/µl (ppm). This work demonstrates the applicability of microfluidic sample preparation to liquid characterization by XRF, and provides a basis for further development of this approach for elemental analysis within a range of sample types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A semiconductor device, a microSD card, was measured by using two XRF instruments. 2D elemental images were obtained using a micro‐XRF system with a spatial resolution of 10 µm. Elemental distributions of the near‐surface region of the sample were clearly shown. Titanium was observed in the resin constituting the sample. Nickel and gold were observed on a terminal and localization of the sample. Elemental distribution of copper reflected the circuit structure of the measurement area that was in the neighborhood of the sample surface. Moreover, the elemental depth distributions of the sample were measured by using a confocal micro‐XRF instrument. The confocal micro‐XRF instrument was constructed in the laboratory with fine‐focus polycapillary x‐ray optics. The depth resolution of the developed spectrometer was 13.7 µm at an energy of Au Lβ (11.4 keV). The elemental images obtained at near‐surface by confocal micro‐XRF were the same as the results obtained from 2D micro‐XRF. However, different Cu images were obtained at a depth of several tens of micrometers. This indicates that microSD cards consist of a few different Cu‐circuit structure designs. The elemental depth distributions of each circuit structure of the semiconductor device were clearly shown by confocal micro‐XRF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号