首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel way to prepare an electroactive polyamide (alternating copolymer) is presented. Well‐defined molecular structure polyamide with amine‐capped aniline pentamer in the main chain was obtained. The copolymer has been characterized by Fourier‐transform infrared (FTIR) spectra, 1H NMR, elemental analysis (EA), and gel permeation chromatography (GPC). Its chemical oxidation process was studied by UV–vis spectra and the electrochemical analysis was checked by cyclic voltammetry (CV). It was found that the obtained electroactive polyamide shows three redox peaks in the cyclic voltammetry, which is different from the polyaniline. Moreover, the thermal properties of the copolymer were evaluated by thermogravimetric analysis (TGA). The electrical conductivity is about 2.5 × 10?6 S cm?1 at room temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 477–482, 2006  相似文献   

2.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A novel combined main‐chain/side‐chain liquid crystalline polymer based on mesogen‐jacketed liquid crystal polymers (MJLCPs) containing two biphenyls per mesogenic core of MJLCPs main chain, poly(2,5‐bis{[6‐(4‐butoxy‐4′‐oxy‐biphenyl)hexyl]oxycarbonyl}styrene) (P1–P8) was successfully synthesized via atom transfer radical polymerization (ATRP). The chemical structure of the monomer was confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymer with different molecular weights (P1–P8) were performed with 1H NMR, gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). Their phase transitions and liquid‐crystalline behaviors of the polymers were investigated by differential scanning calorimetry (DSC) and polarized optical microscope (POM). We found that the polymers P1–P8 exhibited similar behavior with three different liquid crystalline phases upon heating to or cooling in addition to isotropic state, which should be related to the complex liquid crystal property of the side‐chain and the main‐chain. Moreover, the transition temperatures of liquid crystalline phases of P1–P8 are found to be dependent on the molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7310–7320, 2008  相似文献   

4.
5.
A siloxane‐containing diphenol is synthesized from 1,1,3,3‐tetramethyldisiloxane and o‐allylphenol, followed by the Mannich condensation with aniline, methylamine, and formaldehyde yielding two siloxane‐containing benzoxazines. The onset polymerization temperature of aniline‐based benzoxazine is higher than that of the methylamine counterpart. The dynamic mechanical properties of the polybenzoxazines depend on the structure of the starting primary amines. Both polybenzoxazines exhibit one‐way dual‐shape memory behavior in response to changes in temperature, and they show excellent shape fixity ratios in bending, tension, and tensile stress–strain tests, high shape recovery ratios in bending and tension tests, but relatively low shape recovery ratios in tensile stress–strain test. The network chain segments including the alkylsiloxane units serve as a thermal control switch based on the glass transition temperatures (39 and 53 °C) for the polybenzoxazines. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1255–1266  相似文献   

6.
Phase diagrams of main‐chain liquid‐crystalline polymer (MCLCP) solutions have been calculated self‐consistently on the basis of a simple addition of the Flory–Huggins free energy for isotropic mixing, the Maier–Saupe free energy for nematic ordering, and the Flory free energy for chain rigidity of the MCLCP backbone. The calculated phase diagram is an upper critical solution type overlapping with the nematic–isotropic transition. The phase diagram consists of liquid–liquid, liquid–nematic, and pure nematic regions. Subsequently, the dynamics of thermally induced phase separation and morphology development have been investigated by the incorporation of the combined free energy density into the coupled time‐dependent Ginzburg–Landau (model C) equations, which involve conserved compositional and nonconserved orientational order parameters. The numerical calculations reveal a variety of the morphological patterns arising from the competition between liquid–liquid phase separation and nematic ordering of the liquid‐crystalline polymer. Of particular interest is the observation of an inflection in the growth dynamic curve, which may be attributed to the nematic ordering of the MCLCP component, which leads to the breakdown of the interconnected domains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 913–926, 2003  相似文献   

7.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

8.
A propargyl ether‐containing benzoxazine (4) was prepared from a potassium carbonate‐catalyzed nucleophilic substitution of propargyl bromide and a phenolic OH‐containing benzoxazine (3) , which was prepared from 1‐(4‐hydroxyphenyl)‐1‐(4‐aminophenyl)‐1‐(6‐oxido‐6H ‐dibenz <c,e><1,2> oxaphosphorin‐6‐yl)ethane (1) by a three‐step procedure. The curing reactions of (4) were monitored by IR and DSC. A reaction mechanism was proposed based on the observation. Benzoxazines (3) and (4) were applied as epoxy curing agents. The microstructure and the structure‐property relationship of the resulting thermosets are discussed. The double‐strand structure in (4) ‐cured epoxy thermosets afforded higher crosslinking density, and led to higher thermal properties. In addition, the (4) ‐cured epoxy thermosets possess half the amount of highly polar hydroxyl groups than those of the (3) ‐cured epoxy thermosets, resulting in a lower dielectric constant, dissipation factor, and water absorption. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1359–1367  相似文献   

9.
A bifunctional benzoxazine monomer, 6,6′‐bis(3‐allyl‐3,4‐dihydro‐2H‐benzo[e][1,3]oxazinyl) sulfone (BS‐ala), was synthesized from bisphenol‐S, allylamine and formaldehyde via a solution method. The chemical structure of BS‐ala was confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The polymerization behavior of BS‐ala was investigated by FTIR, solid‐state 13C NMR, and differential scanning calorimetry (DSC). The oxazine ring opening polymerization is prior to the addition polymerization of allyl group, and the exothermic peaks corresponding to the two reactions appear partially overlapped in the DSC curve. The storage modulus of the resultant polybenzoxazine at 25°C is about 3.9 GPa, and the glass transition temperature is 254°C. The 5% and 10% weight loss temperatures of the polybenzoxazine are about 335°C and 361°C in both air and nitrogen, respectively. The char yield is about 58% at 800°C in nitrogen, whereas almost no residue is remained at 700°C in air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A polymer bearing 1,3‐benzoxazine moiety in the side chain was synthesized successfully from poly(allylamine) based on a stepwise strategy consisted of three steps: (1) treatment of poly(allylamine) with salicylaldehyde to convert the amino group in the side chain into the corresponding o‐(iminomethyl)phenol moiety, (2) reduction of the o‐(iminomethyl)phenol to obtain the corresponding o‐(aminomethyl)phenol moiety, and (3) formation of 1,3‐benzoxazine moiety by the reaction of the o‐(aminomethyl)phenol with formaldehyde. The content ratio of benzoxazine moieties and o‐(aminomethyl)phenol moieties in the polymer were tunable by varying amount of formaldehyde. The presence of o‐(aminomethyl)phenol moieties exhibited a significant promoting effect on the crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume (ΔV*) of a syndioregic main‐chain hydrazone (SMCH) nonlinear optical polymer. The decay of the SHG signal from poled films of SMCH was recorded at hydrostatic pressures up to 2924 atm and at temperatures between 25 °C below the glass‐transition temperature (Tg) to 20 °C above it. ΔV* for pressures less than 500–1000 atm and T > Tg decreased as the temperature was increased. For pressures greater than 1000 atm, ΔV* was essentially constant for all temperatures. In addition, the size of ΔV* indicated that the chromophore in this main chain was internally flexible. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 895–900, 2001  相似文献   

13.
A rigid diamine was synthesized from myo‐inositol, a naturally occurring cyclic hexaol, and used as a monomer to synthesize polyamides. myo‐Inositol was treated with 1,1‐dimethoxycyclohexane to yield a bisketal bearing two hydroxyl groups, and from this bisketal, the target diamine was synthesized in three steps: (1) derivation of the diol into the corresponding bistriflate, (2) nucleophilic substitution of the bistriflate with sodium azide yielding a diazide, and (3) reduction of the diazide to the target diamine. The target diamine readily underwent polycondensation with dicarboxylic acid chloride in solution. The resulting polyamides, whose main chain inherited the rigid 5‐6‐5 system from the diamine monomers, have high glass transition temperatures. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3436–3443  相似文献   

14.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

15.
Surface functionalization in a nanoscopic scaffold is highly desirable to afford nano‐particles with diversified features and functions. Herein are reported the surface decoration of dispersed block copolymer nano‐objects. First, side‐chain double bond containing oleic acid based macro chain transfer agent (macroCTA), poly(2‐(methacryloyloxy)ethyl oleate) (PMAEO), was synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization and used as a steric stabilizer during the RAFT dispersion block copolymerization of benzyl methacrylate (BzMA) in n‐heptane at 70 °C. We have found that block copolymer morphologies could evolve from spherical micelles, through worm to vesicles, and finally to large compound vesicles with the increase of solvophobic poly(BzMA) block length, keeping solvophilic chain length and total solid content constant. Finally, different thiol compounds having alkyl, carboxyl, hydroxyl, and protected amine functionalities have been ligated onto the PMAEO segment, which is prone to functionalization via its reactive double bond through thiol‐ene radical reactions. Thiol‐ene modification reactions of the as‐synthesized nano‐objects retain their morphologies as visualized by field emission‐scanning electron microscopy. Thus, the facile and modular synthetic approach presented in this study allowed in situ preparation of surface modified block copolymer nano‐objects at very high concentration, where renewable resource derived oleate surface in the nanoparticle was functionalized. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 263–273  相似文献   

16.
A series of comb‐type polycarbosilanes of the type [Si(CH3)(OR)CH2]n {where R = (CH2)mR′, R′ = ? O‐p‐biphenyl? X [X = H (m = 3, 6, 8, or 11) or CN (m = 11)], and R′ = (CF2)7CF3 (m = 4)} were prepared from poly(chloromethylsilylenemethylene) by reactions with the respective hydroxy‐terminated side chains in the presence of triethylamine. The product side‐chain polymers were typically greater than 90% substituted and, for R′ = ? O‐p‐biphenyl? X derivatives, they exhibited phase transitions between 27 and 150 °C involving both crystalline and liquid‐crystalline phases. The introduction of the polar p‐CN substituent to the biphenyl mesogen resulted in a substantial increase in both the isotropization temperature and the liquid‐crystalline phase range with respect to the corresponding unsubstituted biphenyl derivative. For R = (CH2)11? O‐biphenyl side chains, an analogous side‐chain liquid‐crystalline (SCLC) polysiloxane derivative of the type [Si(CH3)(O(CH2)11? O‐biphenyl)O]n was prepared by means of a catalytic dehydrogenation reaction. In contrast to the polycarbosilane bearing the same side chain, this polymer did not exhibit any liquid‐crystalline phases but melted directly from a crystalline phase to an isotropic liquid at 94 °C. Similar behavior was observed for the polycarbosilane with a fluorocarbon chain, for which a single transition from a crystalline phase to an isotropic liquid was observed at ?0.7 °C. The molecular structures of these polymers were characterized by means of gel permeation chromatography and high‐resolution NMR studies, and the crystalline and liquid‐crystalline phases of the SCLC polymers were identified by differential scanning calorimetry, polarized optical microscopy, and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 984–997, 2003  相似文献   

17.
A new triphenylamine‐based polyamide I was prepared by direct polycondensation of AB‐type monomer, 4‐amino‐4′‐carboxy‐4″‐methoxytriphenylamine ( 4 ), in the presence of triphenyl phosphite and pyridine as condensation agents. The obtained polyamide I showed excellent solubility in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be cast into transparent film with weight‐average molecular weight (Mw = 63,400) and polydispersity index (PDI = 1.79). The polyamide I exhibited good thermal stability with relatively high glass‐transition temperature (282 °C), 10% weight‐loss temperature above 470 °C under a nitrogen atmosphere, and char yield at 800 °C in nitrogen higher than 64%. It also showed maximum ultraviolet‐visible absorption at 362 nm and exhibited fluorescence emission maxima at 493 nm in NMP solution with fluorescence quantum yield 4.4%. Cyclic voltammogram of polyamide I film cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple at 0.72 V (oxidation onset potential) versus Ag/AgCl in acetonitrile solution and revealed good stability of the electrochromic characteristic with a color change from colorless to green at applied potentials ranging from 0.00 to 1.10 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1988–2001, 2009  相似文献   

18.
An ω‐amino carboxylic acid monomer that contained a nonlinear optical (NLO) chromophore was prepared by a convergent synthesis. Strategies for selective protection/deprotection of the amino and carboxylic acid functionalities were developed. The protected monomer, 4‐[N‐(4‐benzyloxycarbonyl)butyl‐N‐methylamino]‐4′‐[2″,5″‐bis(decyloxy)‐4″‐(phthalimidomethyl)benzylsulfonyl]azobenzene, could be deprotected selectively or sequentially to give HOOC‐monomer‐N‐phthaloyl, benzyl‐OOC‐monomer‐NH2, or HOOC‐monomer‐NH2. Sequential synthesis was performed to yield main‐chain NLO dimers and tetramers. This was accomplished by selective deprotection and dicyclohexylcarbodiimide coupling. The HOOC‐monomer‐NH2 was polymerized by treatment with diphenylphosphoryl azide to give a main‐chain NLO polyamide. The monomer, dimer, tetramer, and polymer NLO materials were characterized by 1H, 13C, IR, and UV–visible spectroscopy as well as by gel permeation chromatography, differential scanning calorimetry, and elemental analysis. The NLO properties of these materials were measured. Thin films of the oligomers and polymer were prepared by spin casting on indium‐tin oxide coated glass. The second‐order NLO properties of the oligomers and polymer thin films were studied by in situ corona poling/second‐harmonic generation and attenuated total reflection methods. The optimal poling temperatures were significantly lower than the melting temperatures or glass‐transition temperatures of the oligomers and polymer. The poling efficiency increased in the following order: monomer, oligomers, and polymer. An electro‐optic coefficient of 4 pm/V at 1.06 μm was obtained for the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 546–559, 2000  相似文献   

19.
Thienoisoindigo (TIG) moiety has been paid numerous attentions as an excellent acceptor building block in low‐band‐gap polymers. Herein, a new TIG‐dithiophene alternating copolymer (PTIG2T) was successfully synthesized from an asymmetric TIG‐based donor–acceptor (D‐A) monomer via the self‐condensation‐type direct arylation polymerization. PTIG2T exhibited the light absorption over 1000 nm owing to the intramolecular charge transfer in the thin film state, which corresponded to an optical band gap of 1.24 eV. The HOMO and LUMO levels of PTIG2T were determined to be −5.08 and −3.60 eV, respectively. Furthermore, the organic photovoltaic (OPV) with a PTIG2T/PC61BM active layer achieved a power conversion efficiency (PCE) of 3.19%, which is one of the highest PEC achieved by OPVs with TIG‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 430–436  相似文献   

20.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号