首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioreduction of N‐oxide compounds is the basis for the mode of action of a number of biologically active molecules. These compounds are thought to act by forming a reactive oxygen species through an intracellular reduction and subsequent redox cycling process within the organism. With these results in mind, the preliminary investigation into the electrochemical reduction of the benzisoxazole 2‐oxide ring system was undertaken, with the thought that this class of compounds would reduce in a similar fashion to other N‐oxide heterocycles. The electrochemical reduction of 3‐phenyl‐1,2‐benzisoxazole 2‐oxide on boron‐doped diamond was studied using cyclic and square wave voltammetry as well as controlled potential electrolysis and HPLC for qualitative identification of the reaction products. It was found that the reduction proceeded with an initial quasi‐reversible one‐electron reduction followed by the very fast cleavage of either the endocyclic or exocyclic N–O bond. Subsequent electron transfer and protonation resulted in an overall two‐electron reduction and formation of the 2‐hydroxyaryl oxime and benzisoxazole. These results are analogous to those observed in the electrochemical reduction of other heterocyclic N‐oxides albeit the reduction of the benzisoxazole N‐oxides takes place at a more negative potential. However, these encouraging results warrant further investigation into the reduction potential of substituted benzisoxazole N‐oxides as well as to elucidate and characterize the nature of the intermediate species involved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Electrochemical reduction of 2,4‐dimethyl(diethyl)‐9‐oxo‐10‐(4‐heptoxyphenyl)‐9H‐thioxanthenium hexafluorophosphates in acetonitrile (MeCN) and N,N‐dimethylformamide is an irreversible 1‐electron process accompanied by the cleavage of the C(Ph)‐S bond in thioxanthenium cations with the formation of the corresponding 2,4‐dimethyl(diethyl)‐9H‐thioxanthene‐9‐ones. One‐electron reversible electrochemical reduction of the latter compounds occurs at more negative potentials and yields the corresponding radical anions, which have been characterized by electron paramagnetic resonance spectroscopy and density functional theory calculations at the (U)B3LYP/6‐31+G*/polarizable continuum model level of theory.  相似文献   

3.
A series of substituted chlorinated chalcones namely, 3‐(2,4‐dichlorophenyl)‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one, have been synthesized, X being H, NH2, OMe, Me, F, Cl, CO2Et, CN, and NO2. Dual substituent parameter (DSP) models of 13C NMR chemical shift (CS) have revealed that π‐polarization concept could be utilized to explain the reverse field effect at CO, the enhanced substituent field effect at CO, C‐2, and C‐5, and the decreased sensitivity of substituent field effect at C‐6. Chlorine atoms dipole direction at the benzylidene ring either enhances or reduces substituent effect depending on how they couple with the substituent dipole at the probe site. The correlation of 13C NMR CS of C‐2, C‐5, and C‐6 with σ and σ indicates that chlorine atoms in the benzylidine ring deplete the ring from charges. Both MSP of Hammett and DSP of Taft 13C NMR CS models give similar trends of substituent effects at C‐2, C‐5, and C‐6. However, the former fail to give a significant correlation for CO and C‐6 13C NMR CS. MSP of σq and DSP of Taft and Reynolds models significantly correlated 13C NMR CS of Cβ. MSP of σq fails to correlate C‐1′ 13C NMR CS. Investigation of 13C NMR CS of non‐chlorinated chalcones series: 3‐phenyl‐1‐(4′‐X‐phenyl)‐2‐propen‐1‐one has revealed similar trends of substituent effects as in the chlorinated chalcones series for C‐1′, CO, Cα, and Cβ. In contrast, the substituent effect of the non‐chlorinated chalcone series at C‐2, C‐5, and C‐6 did not correlate with any substituent constant. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The acid‐catalyzed hydrolysis of a series of 5‐substituted‐1H,3H‐2,1,3‐benzothiadiazole 2,2‐dioxides has been investigated in aqueous solutions of sulfuric, perchloric, and hydrochloric acid at 85.0 ± 0.05 °C. Analysis of the kinetic data by the excess acidity method, Arrhenius parameters, the order of the catalytic effects of strong acids, the kinetic deuterium isotope effect, and the substituent effect have indicated that the hydrolysis of 5‐substituted benzosulfamides 1a , 1b , 1c , 1d occur with a mechanistic switchover from A2 to A1 in the studied range: an A2 mechanism in low acidity regions and an A1 mechanism in high acid concentrations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The first conformational analysis of 3‐silathiane and its C‐substituted derivatives, namely, 3,3‐dimethyl‐3‐silathiane 1 , 2,3,3‐trimethyl‐3‐silathiane 2 , and 2‐trimethylsilyl‐3,3‐dimethyl‐3‐silathiane 3 was performed by using dynamic NMR spectroscopy and B3LYP/6‐311G(d,p) quantum chemical calculations. From coalescence temperatures, ring inversion barriers ΔG for 1 and 2 were estimated to be 6.3 and 6.8 kcal/mol, respectively. These values are considerably lower than that of thiacyclohexane (9.4 kcal/mol) but slightly higher than the one of 1,1‐dimethylsilacyclohexane (5.5 kcal/mol). The conformational free energy for the methyl group in 2 (?ΔG° = 0.35 kcal/mol) derived from low‐temperature 13C NMR data is fairly consistent with the calculated value. For compound 2 , theoretical calculations give ΔE value close to zero for the equilibrium between the 2 ‐Meax and 2 ‐Meeq conformers. The calculated equatorial preference of the trimethylsilyl group in 3 is much more pronounced (?ΔG° = 1.8 kcal/mol) and the predominance of the 3 ‐SiMe3 eq conformer at room temperature was confirmed by the simulated 1H NMR and 2D NOESY spectra. The effect of the 2‐substituent on the structural parameters of 2 and 3 is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
syn‐2,2,4,4‐Tetramethyl‐3‐{2‐[3,4‐alkylenedioxy‐5‐(3‐pyridyl)]thienyl}pentan‐3‐ols self‐associate both in the solid state and in solution. Single‐crystal X‐ray diffraction study of the 3,4‐ethylenedioxythiophene (EDOT) derivative shows that it exists as a centrosymmetric head‐to‐tail, syn dimer in the solid state. The IR spectra of the solids display only a broad OH absorption around 3300 cm?1, corresponding to a hydrogen‐bonded species. 1H Nuclear Overhauser Effect Spectroscopy (NOESY) NMR experiments in benzene reveal interactions between the tert‐butyl groups and the H2 and H6 protons of the pyridyl group. Two approaches have been used to determine association constants of the EDOT derivative by NMR titration, based on the concentration dependence of (i) the syn/anti ratio and (ii) the OH proton shift of the syn rotamer. Reasonably concordant results are obtained from 298 to 323 K (3.6 and 3.9 M?1, respectively, at 298 K). Similar values are obtained from the syn OH proton shift variation for the 3,4‐methylenedioxythiophene (MDOT) derivative. Concentration‐dependent variation of the anti OH proton shift in the latter suggests that the anti isomer associates in the form of an open, singly hydrogen‐bonded dimer, with a much smaller association constant than the syn rotamer. Self‐association constants for 3‐pyridyl‐EDOT‐alkanols with smaller substituents vary by a factor of 4 from (i‐Pr)2 up to (CD3)2, while the hetero‐association constants for the same compounds with pyridine vary slightly less. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new merocyanine dye, 1,3‐Dimethyl‐5‐{(thien‐2‐yl)‐[4‐(1‐piperidyl)phenyl]methylidene}‐ (1H, 3H)‐pyrimidine‐2,4,6‐trione 3 , has been synthesized by condensation of 2‐[4‐(piperidyl)benzoyl]thiophene 1 with N,N′‐dimethyl barbituric acid 2 . The solvatochromic response of 3 dissolved in 26 solvents of different polarity has been measured. The solvent‐dependent long‐wavelength UV/Vis spectroscopic absorption maxima, vmax, are analyzed using the empirical Kamlet–Taft solvent parameters π* (dipolarity/polarizability), α (hydrogen‐bond donating capacity), and β (hydrogen‐bond accepting ability) in terms of the well‐established linear solvation energy relationship (LSER): (1) The solvent independent coefficients s , a , and b and (vmax)0 have been determined. The McRae equation and the empirical solvent polarity index, ET(30) have been also used to study the solvatochromism of 3 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A limited series of 4eq‐substituted (X) 2‐methyleneadamantanes ( 6 , Y?CH2, X?F, Cl, Br, I, and SnMe3) has been synthesized and diastereoselectivities for their hydrochlorination (HCl/CH2Cl2) have been determined. Diastereoselectivities for the fluorination (DAST/CH2Cl2) of secondary alcohol mixtures, obtained from the hydride reduction of the precursor ketones ( 6 ,Y?O) to the alkenes, have also been measured. A comparison of this selectivity data for nucleophilic trapping of 4eq‐substituted (X) 2‐adamantyl cations ( 4 , R?H and Me) with the corresponding information for 5‐substituted (X) 2‐adamantyl cations ( 1 , R?H and Me) has revealed important distinctions between the two series. In particular, whereas extended hyperconjugative effects appear to be the predominant electronic effect governing facial selectivity in the 5,2‐series, electrostatic influences prevail in the 4,2‐disposition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The time‐dependent density functional theory (TDDFT) method has been performed to investigate the excited state and hydrogen bonding dynamics of a series of photoinduced hydrogen‐bonded complexes formed by (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate with water molecules in vacuum. The ground state geometric optimizations and electronic transition energies as well as corresponding oscillator strengths of the low‐lying electronic excited states of the (E)‐S‐(2‐aminopropyl) 3‐(4‐hydroxyphenyl)prop‐2‐enethioate monomer and its hydrogen‐bonded complexes O1‐H2O, O2‐H2O, and O1O2‐(H2O)2 were calculated by the density functional theory and TDDFT methods, respectively. It is found that in the excited states S1 and S2, the intermolecular hydrogen bond formed with carbonyl oxygen is strengthened and induces an excitation energy redshift, whereas the hydrogen bond formed with phenolate oxygen is weakened and results in an excitation energy blueshift. This can be confirmed based on the excited state geometric optimizations by the TDDFT method. Furthermore, the frontier molecular orbital analysis reveals that the states with the maximum oscillator strength are mainly contributed by the orbital transition from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. These states are of locally excited character, and they correspond to single‐bond isomerization while the double bond remains unchanged in vacuum.  相似文献   

11.
A series of nitrophenyl β‐cyclodextrin derivatives: mono[6‐deoxy‐6‐(4‐nitrobenzamido)]‐per‐ O‐methyl‐β‐cyclodextrin (R1? Ph? NO2), mono[6‐deoxy‐6‐(3‐nitrobenzamido)]‐per‐O‐methyl‐β‐cyclodextrin (R2? Ph? NO2) and heptakis[6‐deoxy‐6‐(4‐nitrobenzamido)‐2,3‐di‐O‐methyl]‐β‐cyclodextrin [R3? (Ph? NO2)7] were synthesized. Purity and composition of the obtained substances were checked. Electroreduction of nitro groups of the new synthesized compounds was investigated on mercury electrode using cyclic voltammetry and chronocoulometry. The parameters of the reduction processes of ? NO2 groups of the investigated compounds were found not to be comparable to the reduction of nitrobenzene under the same experimental conditions. Moreover, the electroreduction of nitro groups in these nitrophenyl derivatives was dependent on pH, the type of the studied compound, and slightly on the solvent composition. All the reactants were strongly adsorbed on mercury electrode. In the case of R3? (Ph? NO2)7, its seven nitro groups were reduced practically at the same potential, and no radical anion formation was observed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
4‐Alkyl‐2,2,6,6‐tetramethyl‐1,4,2,6‐oxaazadisilinanes RN[CH2Si(Me)2]2O [R = Me ( 1 ), i‐Pr ( 2 )] were synthesized by two methods which provided good yields up to 84%. Low temperature NMR study of compounds ( 1 ) and ( 2 ) revealed a frozen ring inversion with the energy barriers of 8.5 and 7.7 kcal/mol at 163 and 143 K, respectively, which is substantially lower than that for their carbon analog, N‐methylmorpholine. DFT calculations performed on the example of molecule ( 1 ) showed that N? Meax conformer to exist in the sofa conformation with the coplanar fragment C? Si? O? Si? C, and its N? Meeq conformer in a flattened chair conformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Solvolysis rates of 2‐(aryldimethylsilyl)‐1‐methylethyl and 2‐(aryldimethylsilyl)‐1‐tert‐butylethyl trifluoroacetates were determined conductimetrically in 60% (v/v) aqueous ethanol. The effects of aryl substituents at the silicon atom on the solvolysis rates at 50 °C were correlated with parameters of r+ = 0.15 with the Yukawa–Tsuno equation, giving ρ values of ?1.5 for both secondary α‐Me and αtert‐Bu systems. The ρ values for those secondary systems are less negative than ?1.75 for the 2‐(aryldimethylsilyl)ethyl system that proceeds by the Eaborn (non‐vertical) mechanism, while they are distinctly more negative than ?0.99 for 2‐(aryldimethylsilyl)‐1‐phenylethyl system that should proceed by the Lambert (vertical) mechanism. There was a fairly linear relationship between the reaction constants (ρ) for the β‐silyl substituent effects and the solvolysis reactivities for a series of β‐silyl substrates. The solvolyses of the α‐Me and tert‐Bu substrates proceed through the transition state (TS) with an appreciable degree of the β‐silyl participation, close to the Eaborn (non‐vertical) TS rather than to the Lambert (vertical) TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Three series of porphyrin liquid crystalline compounds, [5‐(p‐alkoxy)phenyl‐10, 15, 20‐tri‐phenyl] porphyrin and their rare earth complexes (Tb (III), Dy (III), Er (III), Yb (III)), with a hexagonal columnar discotic columnar(Colh) phase have been synthesized. These compounds were characterized by elemental analysis, molar conductances, UV‐visible spectra, infrared spectra, luminescence spectra, and cyclic voltammetry. These compounds exhibit more than one mesophases, which transition points of temperature change from ?33.6 to 16.0 °C, and transition points of temperature for isotropic liquid also increase from 4.9 to 38.2 °C, with increasing chain length. Their surface photovoltage (SPV) response have also been investigated by the means of surface photovoltage spectroscopy (SPS) and field‐induced surface photovoltage spectroscopy (EFISPS). It was found that their SPV bands are analogous with the UV‐visible absorption spectra and derived from the same transition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of solvents on chemical phenomena (rate and equilibrium constants, spectroscopic transitions, etc.) are conveniently described by solvation free‐energy relationships that take into account solvent acidity, basicity and dipolarity/polarizability. The latter can be separated into its components by manipulating the UV–vis spectra of two solvatochromic probes, 2‐(N,N‐dimethylamino)‐7‐nitrofluorene (DMANF) and a di‐(tert‐butyl)‐tetramethyl docosanonaen probe (ttbP9) whose synthesis is laborious and expensive. Recently, we have shown that the natural dye β‐carotene can be conveniently employed instead of ttbP9 for the determination of solvent polarizability (SP) of 76 molecular solvents and four ionic liquids. In the present work, we report the polarizabilities of further 24 solvents. Based on the solvatochromism of β‐carotene and DMANF, we have calculated solvent dipolarity (SD) for 103 protic and aprotic molecular solvents, and ionic liquids. The dependence of SD and SP on the number of carbon atoms in the acyl‐ or alkyl group of several homologous series (alcohols; 2‐alkoxyethanols; carboxylic acid‐ anhydrides, and esters, ionic liquids) is calculated and briefly discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The ring inversion process for a series of 3,5‐dialkyl‐1‐oxa‐3,5‐diazacyclohexanes was studied using proton dynamic nuclear magnetic resonance (1H DNMR) spectroscopy in conjunction with semiempirical calculations. At low temperature, the ring methylene protons decoalesced into two AB spin systems in a 2:1 ratio. Lineshape simulations of the DNMR spectra provided first‐order rate constants for magnetic exchange. The energy barrier for each inversion reaction was calculated from the respective rate constants. In general, as the size of the N‐alkyl group increased, the barrier to ring inversion decreased. A similar trend was seen in semiempirical calculations that modeled the ring inversion process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Conformational preferences of glutaric, 3‐hydroxyglutaric and 3‐methylglutaric acid, and their mono‐ and dianions have been investigated with the aid of NMR spectroscopy. In contrast to succinic acid, glutaric acid displays essentially statistical conformational equilibria in polar and non‐polar solutions of high and low hydrogen‐bonding ability with no clear evidence for intramolecular hydrogen‐bonding interactions. The acid ionization constant ratios, K 1/K2, in D2O and DMSO of glutaric, 3‐hydroxyglutaric, and 3‐methylglutaric acids also indicate that intramolecular interactions are much less important than, or indeed insignificant, for shorter‐chain acids. FTIR studies on 3‐methylglutaric acid indicate some preference for either association with solvent or dimerization, depending on the solvent, rather than intramolecular hydrogen bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Fourier transform infrared (FT‐IR) and FT‐Raman spectra of 4‐ethyl‐N‐(2′‐hydroxy‐5′‐nitrophenyl)benzamide were recorded and analyzed. A surface‐enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes. The red shift of the NH stretching wavenumber in the infrared spectrum from the computational wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. The simultaneous IR and Raman activation of the CO stretching mode gives the charge transfer interaction through a π‐conjugated path. The presence of methyl modes in the SERS spectrum indicates the nearness of the methyl group to the metal surface, which affects the orientation and metal molecule interaction. The first hyperpolarizability and predicted infrared intensities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive subject for future studies of nonlinear optics. Optimized geometrical parameters of the title compound are in agreement with reported structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A series of trans‐2‐aminocyclohexanol derivatives have been explored as powerful conformational pH triggers. On protonation of the amino group, a conformer with equatorial position of ammonio and hydroxy groups becomes predominant because of an intramolecular hydrogen bond and electrostatic interactions. The energy of these interactions was estimated to be above 10 kJ/mol and in some models exceeded 20 kJ/mol (strong enough to twist a ring in tert‐butyl derivatives). As a result of this conformational flip, all other substituents are forced to change their orientation. If the substituents are designed to perform certain geometry‐dependent functions, for example, as cation chelators or as lipid tails, such acid‐induced transition may be used to control the corresponding molecular properties. The pH sensitivity of conformational equilibria was explored by 1H nuclear magnetic resonance spectroscopy (NMR), and the titration curves were used for estimation of the pKa values of protonated compounds that varied from 2.6 to 8.5 (in d4‐methanol) depending on the structure of amino group. Thus, trans‐2‐aminocyclohexanols can be also used as conformational pH indicators in organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号