共查询到20条相似文献,搜索用时 15 毫秒
1.
Mahua G. Dhara Durairaj Baskaran Swaminathan Sivaram 《Journal of polymer science. Part A, Polymer chemistry》2008,46(6):2132-2144
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008 相似文献
2.
Jakub K. Wegrzyn Tim Stephan Ryan Lau Robert B. Grubbs 《Journal of polymer science. Part A, Polymer chemistry》2005,43(14):2977-2984
Amphiphilic poly(ethylene oxide)‐block‐poly(isoprene) (PEO‐b‐PI) diblock copolymers were prepared by nitroxide‐mediated polymerization of isoprene from alkoxyamine‐terminal poly(ethylene oxide) (PEO). PEO monomethyl ether (Mn ≈ 5200 g/mol) was functionalized by esterification with 2‐bromopropionyl bromide with subsequent copper‐mediated replacement of the terminal bromine with 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide. The resulting PEO‐alkoxyamine macroinitiator was used to initiate polymerization of isoprene in bulk and in solution at 125 °C to yield PEO‐b‐PI block copolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.1). Polymerizations were first order in isoprene through 35% conversion. Micellar aggregates of PEO‐b‐PI in aqueous solution were crosslinked by treatment with a water‐soluble redox initiating system, and persistent micellar structures were observed in the dry state by AFM. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2977–2984, 2005 相似文献
3.
Tianzi Huang Jamie M. Messman Kunlun Hong Jimmy W. Mays 《Journal of polymer science. Part A, Polymer chemistry》2012,50(2):338-345
Diblock copolymers of polystyrene‐block‐(1,3‐cyclohexadiene) (PS‐b‐PCHD), with varied molecular weights and compositions, were synthesized by sequential polymerization of styrene and 1,3‐cyclohexadiene (CHD) initiated by sec‐butyllithium in cyclohexane in the presence of appropriate additives during formation of the PCHD block. The residual double bonds in the PCHD block were saturated by addition of in situ generated difluorocarbene and/or hydrogen to enhance thermal and chemical stability. The fluorinated and/or hydrogenated polydiene blocks were chemically stable, allowing for controlled sulfonation of the PS blocks using acetyl sulfate. 1H NMR and FT‐IR characterization confirmed successful fluorination/hydrogenation and sulfonation of the respective blocks. The resulting amphiphilic block copolymers consist of a semiflexible fluorine‐containing hydrophobic block having a bridged double ring structure and a hydrophilic sulfonated PS block. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
4.
Eleni Kaditi Stergios Pispas 《Journal of polymer science. Part A, Polymer chemistry》2010,48(1):24-33
Amphiphilic block copolymers containing β‐lactam groups on the polyisoprene block were synthesized from poly(isoprene‐b‐ethylene oxide) (IEO) diblock copolymer precursors, prepared by anionic polymerization. β‐Lactam functionalization was achieved via reaction of the polyisoprene (PI) block with chlorosulfonyl isocyanate and subsequent reduction. The resulting block copolymers were molecularly characterized by SEC, FTIR, and NMR spectroscopies and DSC. Functionalization was found to proceed in high yields, altering the solubility properties of the PI block and those of the functionalized diblocks. Hydrogen bond formation is assumed to be responsible for the decreased crystallinity of the poly(ethylene oxide) block (PEO) in the bulk state as indicated by DSC measurements. The self‐assembly behavior of the β‐lactam functionalized poly(isoprene‐b‐ethylene oxide) copolymers (LIEO) in aqueous solutions was studied by dynamic light scattering (DLS), static light scattering (SLS), fluorescence spectroscopy, and atomic force microscopy (AFM). Nearly spherical loose aggregates were formed by the LIEO block copolymers, having lower aggregation numbers and higher cmc values compared to the IEO precursors, as a result of the increased polarity of the β‐lactam rings incorporated in the PI blocks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 24–33, 2010 相似文献
5.
Chengzhong Cui Edward M. Bonder Yang Qin Frieder Jäkle 《Journal of polymer science. Part A, Polymer chemistry》2010,48(11):2438-2445
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010 相似文献
6.
Guangqiang Lu Zhongfan Jia Wen Yi Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(24):4404-4409
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002 相似文献
7.
Palash Jyoti Das Anil Barak Yusuke Kawakami Tharanikkarasu Kannan 《Journal of polymer science. Part A, Polymer chemistry》2011,49(6):1376-1386
ABA‐type amphiphilic tri‐block copolymers were successfully synthesized from poly(ethylene oxide) derivatives through anionic polymerization. When poly(styrene) anions were reacted with telechelic bromine‐terminated poly(ethylene oxide) ( 1 ) in 2:1 mole ratio, poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers were formed. Similarly, stable telechelic carbanion‐terminated poly(ethylene oxide), prepared from 1,1‐diphenylethylene‐terminated poly (ethylene oxide) ( 2 ) and sec‐BuLi, was also used to polymerize styrene and methyl methacrylate separately, as a result, poly (styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) and poly (methyl methacrylate)‐b‐poly(ethylene oxide)‐b‐poly(methyl methacrylate) tri‐block copolymers were formed respectively. All these tri‐block copolymers and poly(ethylene oxide) derivatives, 1 and 2 , were characterized by spectroscopic, calorimetric, and chromatographic techniques. Theoretical molecular weights of the tri‐block copolymers were found to be similar to the experimental molecular weights, and narrow polydispersity index was observed for all the tri‐block copolymers. Differential scanning calorimetric studies confirmed the presence of glass transition temperatures of poly(ethylene oxide), poly(styrene), and poly(methyl methacrylate) blocks in the tri‐block copolymers. Poly(styrene)‐b‐poly(ethylene oxide)‐b‐poly(styrene) tri‐block copolymers, prepared from polystyryl anion and 1 , were successfully used to prepare micelles, and according to the transmission electron microscopy and dynamic light scattering results, the micelles were spherical in shape with mean average diameter of 106 ± 5 nm. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
8.
Zhongyu Li Pengpeng Li Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4361-4371
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006 相似文献
9.
Xinchang Pang Guowei Wang Zhongfan Jia Chao Liu Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(24):5824-5837
A novel method for synthesis of amphiphilic macrocyclic graft copolymers with multi‐polystyrene lateral chains is suggested, by combination of anionic ring‐open polymerization (AROP) with atom transfer radical polymerization (ATRP). The anionic ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using triethylene glycol and diphenylmethylpotassium (DPMK) as coinitiators; the monomer reactivity ratio of them are r1(EO) = 1.20 ± 0.01 and r2(EEGE) = 0.76 ± 0.02 respectively. The obtained linear well‐defined α,ω‐dihydroxyl poly(ethylene oxide) with pendant protected hydroxylmethyls (l‐poly(EO‐co‐EEGE)) was cyclized by reaction with tosyl chloride (TsCl) in the presence of solid KOH. The crude cyclized product containing the extended linear chain polymer was hydrolyzed and then purified by treat with α‐CD. The pure cyclic copolymer with multipendant hydroxymethyls [c‐poly(EO‐co‐Gly)] was esterified by reaction with 2‐bromoisobutyryl bromide, and then used as macroinitiators to initiate polymerization of styrene (St), and a series of amphiphilic macrocyclic grafted copolymers composed of a hydrophilic PEO as ring and hydrophobic polystyrene as side chains (c‐PEO‐g‐PS) were obtained. The intermediates and final products were characterized by GPC, NMR and MALDI‐TOF in detail. The experimental results confirmed that c‐PEO‐g‐PS shows stronger conjugation ability with the dyes than the corresponding comb‐PEO‐g‐PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5824–5837, 2007 相似文献
10.
Byoung‐Ki Cho Seung‐Hyun Kim Eunji Lee 《Journal of polymer science. Part A, Polymer chemistry》2010,48(11):2372-2376
We prepared two block copolymers 1 and 2 consisting of a third‐generation dendron with poly(ethylene oxide) (PEO) peripheries and a linear polystyrene (PS) coil. The PS molecular weights were 2000 g/mol and 8000 g/mol for 1 and 2 , respectively. The differential scanning calorimetry (DSC) data indicated that neither of the block copolymers showed glass transition, implying that there was no microphase separation between the PEO and PS blocks. However, upon doping the block copolymers with lithium triflate (lithium concentration per ethylene oxide unit = 0.2), two distinct glass transitions were seen, corresponding to the salt‐doped PEO and PS blocks, respectively. The morphological analysis using small angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM) demonstrated that a hexagonal columnar morphology was induced in salt‐doped sample 1‐Li+ , whereas the other sample ( 2‐Li+ ) with a longer PS coil revealed a lamellar structure. In particular, in the SAXS data of 2‐Li+ , an abrupt reduction in the lamellar thickness was observed near the PS glass transition temperature (Tg), in contrast to the SAXS data for 1‐Li+ . This reduction implies that there is a lateral expansion of the molecular section in the lamellar structure, which can be interpreted by the conformational energy stabilization of the long PS coil above Tg. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2372–2376, 2010 相似文献
11.
Qipeng Guo Fei Chen Ke Wang Ling Chen 《Journal of Polymer Science.Polymer Physics》2006,44(21):3042-3052
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006 相似文献
12.
Pei‐Hong Ni Qi‐Sheng Pan Liu‐Sheng Zha Chang‐Chun Wang Abdelhamid Elaïssari Shou‐Kuan Fu 《Journal of polymer science. Part A, Polymer chemistry》2002,40(4):624-631
A novel, near‐monodisperse, well‐defined ABA triblock copolymer, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(propylene oxide)‐b‐poly[2‐(dimethylamino)ethyl methacrylate], was synthesized via oxyanion‐initiated polymerization. The initiator was a telechelic‐type potassium alcoholate prepared from poly(propylene glycol) and KH in dry tetrahydrofuran. The copolymers produced were characterized by Fourier transform infrared, 1H NMR, and gel permeation chromatography (GPC). GPC and 1H NMR analyses showed that the products obtained were the desired copolymers, with narrow molecular weight distributions (ca. 1.09–1.11) very close to that of the original poly(propylene glycol). 1H NMR, surface tension measurements, and dynamic light scattering all indicated that the triblock copolymer led to interesting aqueous solution behaviors, including temperature‐induced micellization and very high surface activity. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 624–631, 2002; DOI 10.1002/pola.10144 相似文献
13.
Mohamad Nasser‐Eddine Simone Reutenauer Christelle Delaite Guy Hurtrez Philippe Dumas 《Journal of polymer science. Part A, Polymer chemistry》2004,42(7):1745-1751
Three alternative routes, using the heterobifunctional macroinitiator technique, have been developed to obtain polystyrene–poly(tert‐butyl methacrylate)–poly(ethylene oxide) triarm star block copolymers. Only the route showing the reverse initiation of tert‐butyl methacrylate on potassium alkoxide leads to the pure star, whereas the other strategies lead to incomplete initiation because of either an increase in the side reactions, such as transesterification, or a decrease in the accessibility toward bulky catalysts. These limits are linked to the particular location of the initiating group at the junction of the two blocks of the copolymer precursor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1745–1751, 2004 相似文献
14.
Christian Kluger Wolfgang H. Binder 《Journal of polymer science. Part A, Polymer chemistry》2007,45(3):485-499
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007 相似文献
15.
Katherine B. Aubrecht Robert B. Grubbs 《Journal of polymer science. Part A, Polymer chemistry》2005,43(21):5156-5167
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005 相似文献
16.
Rayna Bryaskova Nicolas Willet Antoine Debuigne Robert Jérôme Christophe Detrembleur 《Journal of polymer science. Part A, Polymer chemistry》2007,45(1):81-89
Well‐defined poly(vinyl acetate) macroinitiators, with the chains thus end‐capped by a cobalt complex, were synthesized by cobalt‐mediated radical polymerization and used to initiate styrene polymerization at 30 °C. Although the polymerization of the second block was not controlled, poly(vinyl acetate)‐b‐polystyrene copolymers were successfully prepared and converted into amphiphilic poly(vinyl alcohol)‐b‐polystyrene copolymers by the methanolysis of the ester functions of the poly(vinyl acetate) block. These poly(vinyl alcohol)‐b‐polystyrene copolymers self‐associated in water with the formation of nanocups, at least when the poly(vinyl alcohol) content was low enough. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 81–89, 2007 相似文献
17.
Chao Liu Mugang Pan Yi Zhang Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2008,46(20):6754-6761
The star block copolymers with polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) as side chains and hyperbranched polyglycerol (HPG) as core were synthesized by combination of atom transfer radical polymerization (ATRP) with the “atom transfer nitroxide radical coupling” (“ATNRC”) reaction. The multiarm PS with bromide end groups originated from the HPG core (HPG‐g‐(PS‐Br)n) was synthesized by ATRP first, and the heterofunctional PEO with α‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy group and ω‐hydroxyl group (TEMPO‐PEO) was prepared by anionic polymerization separately using 4‐hydroxyl‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy (HTEMPO) as parents compound. Then ATNRC reaction was conducted between the TEMPO groups in PEO and bromide groups in HPG‐g‐(PS‐Br)n in the presence of CuBr and pentamethyldiethylenetriamine (PMDETA). The obtained star block copolymers and intermediates were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, fourier transform‐infrared in detail. Those results showed that the efficiency of ATNRC in the preparation of multiarm star polymers was satisfactory (>90%) even if the density of coupling cites on HPG was high. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6754–6761, 2008 相似文献
18.
Guowei Wang Bin Hu Xiaoshan Fan Yannan Zhang Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(11):2227-2235
The tadpole‐shaped copolymers polystyrene (PS)‐b‐[cyclic poly(ethylene oxide) (PEO)] [PS‐b‐(c‐PEO)] contained linear tail chains of PS and cyclic head chains of PEO were synthesized by combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). First, the functionalized polystyrene‐glycerol (PS‐Gly) with two active hydroxyl groups at ω end was synthesized by LAP of St and the subsequent capping with 1‐ethoxyethyl glycidyl ether and then deprotection of protected hydroxyl group in acid condition. Then, using PS‐Gly as macroinitiator, the ROP of EO was performed using diphenylmethylpotassium as cocatalyst for AB2 star‐shaped copolymers PS‐b‐(PEO‐OH)2, and the alkyne group was introduced onto PEO arm end for PS‐b‐(PEO‐Alkyne)2. Finally, the intramolecular cyclization was performed by Glaser coupling reaction in pyridine/Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine system under room temperature, and tadpole‐shaped PS‐b‐(c‐PEO) was formed. The target copolymers and their intermediates were well characterized by size‐exclusion chromatography, proton nuclear magnetic resonance spectroscopy, and fourier transform infrared spectroscopy in details. The thermal properties was also determined and compared to investigate the influence of architecture on properties. The results showed that tadpole‐shaped copolymers had lower Tm, Tc, and Xc than that of their precursors of AB2 star‐shaped copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
19.
Masashi Harada Masayuki Ohya Takahisa Suzuki Daisuke Kawaguchi Atsushi Takano Yushu Matsushita 《Journal of Polymer Science.Polymer Physics》2005,43(10):1214-1219
Three poly(4‐trimethylsilylstyrene)‐block‐polyisoprenes (TIs), the molecular weights of which were 82,000, 152,000 and 291,000 (TI‐82K, TI‐152K, and TI‐291K), were synthesized by sequential anionic polymerizations. The component polymers were a miscible pair that presented a lower critical solution temperature phase diagram if blended. The TI phase behavior was investigated with transmission electron microscopy. The order–disorder transition could be observed at a temperature between 200 °C (the ordered state) and 150 °C (the disordered state) for the block copolymer TI‐152K. The block copolymer TI‐82K presented the disordered state at 200 °C, whereas TI‐291K was in the ordered state at 150 °C. With the Flory–Huggins interaction parameter between poly(4‐trimethylsilylstyrene) and polyisoprene, which was evaluated by small‐angle neutron scattering for the block copolymers, the TI phase behavior could be reasonably explained by mean‐field theory. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1214–1219, 2005 相似文献
20.
Tobias Rudolph Adam Nunns Steffi Stumpf Christian Pietsch Felix H. Schacher 《Macromolecular rapid communications》2015,36(18):1651-1657
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30‐b‐PiPrOx75) and 30/70 (PFDMS30‐b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.