首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
The nature and extent of preferential solvation in SNAr reaction between 1‐fluoro‐2,4‐dinitrobenzene and morpholine are observed to depend upon the concentration of amine. Positive deviation from ideality is observed during kinetic studies of reactions carried out with lower concentration of the amine, while reaction rates measured for systems containing higher concentration of the amine show negative deviation from ideal behavior. The anomaly originates from the competition between rate‐limiting proton transfer and fluoride abstraction step in the SNAr mechanism. The observations have been explained on the basis of the generally accepted mechanism and by calculation of preferential solvation parameters.  相似文献   

2.
Inter‐ and intramolecular hydrogen bonding play an important role in determining the arrangement, physical properties, and reactivity of a great diversity of structures in chemical and biological systems. Several aromatic nucleophilic substitutions (ANS) in nonpolar aprotic, (non‐HBD), solvents recently studied in our laboratory have demonstrated the importance of self‐association of amines by hydrogen‐bond interactions. In this paper, we describe 1H‐NMR studies carried out at room temperature on bi‐ and polyfunctionalized amines, namely: N‐(3‐amino‐1‐propyl)morpholine (3‐APMo), histamine, 2‐guanidinobenzimidazole (2‐GB), 1,2‐diaminoethane (EDA), 3‐dimethylamino‐l‐propylamine (DMPA), and 1‐(2‐aminoethyl)piperidine (2‐AEPip). By 1H‐NMR measurements of amine solutions at variable concentrations we have shown that 3‐APMo, histamine and 2‐GB are able to form a six‐membered ring by intramolecular hydrogen bonding, while EDA, DMPA, and 2‐AEPip form dimers by intermolecular hydrogen bonds. Likewise, variable concentration 1H‐NMR studies allowed estimation of the corresponding equilibrium constants for the dimerization. These results are correlated with experimental kinetic results of ANS, confirming hereto the relevance of the “dimer mechanism” in reactions involving these amines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Computational studies are reported for reactions of 4‐substituted‐1‐chloro‐2,6‐dinitrobenzenes 1 , 6‐substituted‐1‐chloro‐2,4‐dinitrobenzenes 2 and some of the corresponding 1‐phenoxy derivatives 3 and 4 with aniline in the gas phase. The effects of substituent groups in the calculated energy values for reactants 1–4 , transition states structures, intermediates and products formed in the reactions between the compounds and anilines have been compared. Calculated bonds length and angles from optimized structures of the reactants were comparable with values reported for some of compounds 1–4 obtained by X‐ray crystal structures analysis. Generally, the decomposition of the Meisenheimer intermediate to the products requires more energy compared with the reactants except for when R = H. The order of stabilization of the intermediate was found to reflect the relative order of activation by substituents in the substrates. The 4‐substituted‐1‐chloro‐2,6‐dinitrobenzenes 1 and the phenoxy derivatives 3 were found to be more stable than their corresponding 6‐substituted analogues. This is an indication that the rate of nucleophilic attack at 1‐position will increase with increasing ring activation but may be reduced by steric repulsion at the reaction centre that increases in the order Cl < OPh. However, the steric hindrance to the steps involved in nucleophilic substitution by aniline is significantly increased when the substrates contain two ortho‐substituents. In most cases, the rate determining step is the decomposition of the σ‐adduct intermediate except with 1‐chloro‐2,6‐dinitrobenzenes 1 and 6‐substituted‐1‐chloro‐2,4‐dinitrobenzenes 2 , either because of reduction in ring activation or the presence of bulky ortho‐substituents in the chloro compounds 1 and 2 . Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The mechanism and regioselectivities and stereoselectivities of the [3 + 2] cycloaddition (32CA) reaction of 3‐(benzylideneamino) oxindole (AY) and trans‐β‐nitrostyrene have been studied using both B3LYP and ωB97XD density functional theory methods together with the standard 6‐31G(d) basis set. Four reactive pathways associated with the ortho and meta regioselective channels and endo and exo stereoselective approaches modes have been explored and characterized. While the B3LYP functional fails to predict the experimental regioselectivity, the ωB97XD one succeeds to predict the experimentally observed meta regioselectivity favoring the formation of meta/endo cycloadduct as the major isomer. Inclusion of solvent effects increases the regioselectivity and decreases the experimentally observed stereoselectivity. Analysis of the density functional theory global reactivity indices and the Parr functions of the reagents in its ground state allows explaining the reactivity and the meta regioselectivity of this zwitterionic‐type 32CA reaction, which account for the high polar character of this reaction. Non‐covalent interaction analysis of the most favorable meta/endo transition state structure reveals that the formation of a hydrogen‐bond between 1 nitro oxygen and the AY N–H hydrogen is responsible for the selectivity experimentally found in this polar zwitterionic‐type 32CA reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号