首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinitiated dispersion polymerization of methyl methacrylate was carried out in a mixture of ethanol and water as dispersion medium in the presence of poly(N‐vinylpyrrolidone) (PVP) as the steric stabilizer and Darocur 1173 as photoinitiator. 93.7% of conversion was achieved within 30 min of UV irradiation at room temperature, and microspheres with 0.94 μm number–average diameter and 1.04 polydispersity index (PDI) were obtained. X‐ray photoelectron spectroscope (XPS) analysis revealed that only parts of surface of the microspheres were covered by PVP. The particle size decreased from 2.34 to 0.98 μm as the concentration of PVP stabilizer increased from 2 to 15%. Extra stabilizer (higher than 15%) has no effect on the particle size and distribution. Increasing medium polarity or decreasing monomer and photoinitiator concentration resulted in a decrease in the particle size. Solvency of reaction medium toward stabilizer, which affects the adsorption of stabilizer on the particle surface, was shown to be crucial for controlling particle size and uniformity because of the high reaction rate in photoinitiated dispersion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1329–1338, 2008  相似文献   

2.
Monodisperse polystyrene microspheres with diameters of 200–500 nm were prepared by dispersion polymerization with microwave irradiation with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator in an ethanol/water medium. The morphology, size, and size distribution of the polystyrene microspheres were characterized with transmission electron microscopy and photon correlation spectroscopy, and the formed films of the polystyrene dispersions were characterized with atomic force microscopy. The effects of the monomer concentration, stabilizer concentration, and initiator concentration on the size and size distribution of the polystyrene microspheres were investigated. The polystyrene microspheres prepared by dispersion polymerization with microwave irradiation were smaller, more uniform, and steadier than those obtained with conventional heating. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2368‐2376, 2005  相似文献   

3.
Monodisperse polystyrene particles crosslinked with different concentrations of divinylbenzene were synthesized in the 3.2–9.1 μm size range by dispersion polymerization in an isopropyl alcohol/toluene mixed‐dispersion medium with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator. The effects of the reaction parameters such as the crosslinking agent concentration, media solvency (controlled by varying the amount of toluene addition), the initiator concentration, and the stabilizer concentration on the particle size and size distribution were investigated with reference particles with a monodisperse size distribution and crosslinked by 1.5 wt % divinylbenzene. The appropriate increase in media solvency was a prerequisite for preparing crosslinked particles without coagulated and/or odd‐shaped particles. The investigation of the effects of the polymerization parameters also shows that only specific sets of conditions produce particles with a monodisperse size distribution. The glass‐transition temperatures of the particles increased with increasing divinylbenzene concentration. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4368–4377, 2002  相似文献   

4.
The nucleation of polymer particles in the miniemulsion polymerization of vinyl acetate/VeoVa10 (VAc/VeoVa10) stabilized with PVOH was studied. The effect of costabilizer type, PVOH concentration, and type (thermal water‐soluble and oil‐soluble; and redox water‐soluble) and concentration of initiator on the extent of droplet nucleation were studied. Droplet nucleation was maximized by improving miniemulsion stability and using efficient initiators. These high solids dispersions could not be obtained by using a conventional batch emulsion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6407–6415, 2008  相似文献   

5.
Starved‐feed microemulsion polymerization of styrene was investigated. The influence of the type (SDS or Dowfax 2A1) and concentration of anionic surfactant on the final particle size of latex made by the polymerization of microemulsions of styrene was studied. In addition, the influence of 1‐pentanol and acrylic acid as cosurfactants was examined. Latexes with 20% solids content and polymer to surfactant ratio of 22 were produced, with a particle diameter of 42 nm and very low polydispersity indexes. Smaller particles are produced using SDS than Dowfax 2A1 for the same weight fraction of surfactant; however, similar particle sizes were obtained with the same molar concentrations of SDS and Dowfax 2A1. Further shot additions of monomer increased solids level as high as 40% and polymer to surfactant ratios greater than 40, with particles remaining monodisperse with average diameter smaller than 60 nm. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 48–54, 2010  相似文献   

6.
A facile and effective approach to preparation of dual‐responsive magnetic core/shell composite microspheres is reported. The magnetite(Fe3O4)/poly(methacrylic acid) (PMAA) composite microspheres were synthesized through encapsulating γ‐methacryloxypropyltrimethoxysilane (MPS)‐modified magnetite colloid nanocrystal clusters (MCNCs) with crosslinked PMAA shell. First, the 200‐nm‐sized MCNCs were fabricated through solvothermal reaction, and then the MCNCs were modified with MPS to form active vinyl groups on the surface of MCNCs, and finally, a pH‐responsive shell of PMAA was coated onto the surface of MCNCs by distillation‐precipitation polymerization. The transmission electron microscopy (TEM) and vibrating sample magnetometer characterization showed that the obtained composite microspheres had well‐defined core/shell structure and high saturation magnetization value (35 emu/g). The experimental results indicated that the thickness and degree of crosslinking of PMAA shell could be well‐controlled. The pH‐induced change in size exhibited by the core/shell microspheres reflected the PMAA shell contained large amount of carboxyl groups. The carboxyl groups and high saturation magnetization make these microspheres have a great potential in biomolecule separation and drug carriers. Moreover, we also demonstrated that other magnetic polymeric microspheres, such as Fe3O4/PAA, Fe3O4/PAM, and Fe3O4/PNIPAM, could be synthesized by this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

7.
Radiopaque microspheres of sizes ranging from 0.2 to 1.4 μm were formed by the dispersion polymerization of the monomer 2‐methacryloyloxyethyl(2,3,5‐triiodobenzoate) in 2‐methoxyethanol. The effects of various polymerization parameters, including the monomer concentration, initiator type and concentration, and stabilizer molecular weight and concentration, on the molecular weight, size, and size distribution of the particles were elucidated. The characterization of these iodinated microspheres was accomplished with routine methods such as Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, gel permeation chromatography, scanning electron microscopy, Brunauer–Emmett–Teller measurements, and elemental analysis. Because of the presence of iodine atoms in these microspheres, they were expected to possess a radiopaque nature. The radiopacity of these particles dispersed in water and in the dry state was demonstrated with an imaging technique based on X‐ray absorption usually used in hospitals. These novel radiopaque microspheres may be used for different X‐ray imaging needs, such as blood pooling, body organs, embolization, dental compositions, implants, prostheses, and nanocomposites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3859–3868, 2006  相似文献   

8.
杨新林 《高分子科学》2010,28(2):277-285
<正>Monodisperse hollow polymer microspheres having various functional groups on the shell-layer,such as carboxylic acid,pyridyl and amide,were prepared by two-stage distillation precipitation polymerization in neat acetonitrile in the absence of any stabilizer or additive,during which monodisperse poly(methacrylic acid)(PMAA) afforded from the first-stage polymerization was utilized as the seeds for the second-stage polymerization.The shell layer with different functional groups was formed during the second-stage copolymerization of either divinylbenzene(DVB) or ethyleneglycol dimethacrylate(EGDMA) as crosslinker and the functional comonomers,in which the hydrogen-bonding interaction between the carboxylic acid group of PMAA core and the functional groups of the corresponding comonomers,including carboxylic acid,amide and pyridyl,played an essential role for the formation of monodisperse core-shell functional microspheres.The hollow polymer microspheres were then developed after the subsequent removal of PMAA cores by dissolution in ethanol under basic condition.Transmission electron microscopy(TEM) and scanning electron microscopy (SEM) were used to determine the morphology of the resultant PMAA core,functional core-shell microspheres and the corresponding hollow polymer microspheres with different functional groups.FT-IR spectra confirmed the successful incorporation of the various functional groups on the shell layer of the hollow polymer microspheres.  相似文献   

9.
Particle coagulation technology is a facile approach to prepare large-scale and narrowly dispersed polymer particles. However, diverse shapes such as ellipsolid, snowman, dumbbell, and trimer among others were obtained if the cross-linker was directly added into the initial reaction mixtures due to the restriction of the highly cross-linking particle fusion process. In this study, we prepared sub-200?nm, narrowly dispersed, highly cross-linked, and spherical latex particles using particle coagulation technology by controlling the relation between the cross-linking net formation and particle coagulation. Depending on the addition time or feeding rate of the cross-linker (divinylbenzene, DVB), the particles with different sizes or shapes were obtained. The later the addition start time of DVB, the narrower the particle size distribution of the latex particles. Alternatively, the increase of the continuing feeding time could also be used to decrease the width of particle size distribution of the ultimate latex. In addition, narrowly dispersed and spherical latex particles also could be directly obtained by advancing the particle coagulation time using 2, 2′-Azobis (2-methylpropionamidine) dihydrochloride as a cationic initiator. Our study presents a new method that will further widen the fields of application of particle coagulation technology.  相似文献   

10.
A highly crosslinked poly(styrene–divinyl benzene–trimethyolpropane trimethacrylate) microsphere containing a polyimide prepolymer (PIP) was prepared by a new emulsification method, Shirasu porous glass (SPG) membrane emulsification, and a subsequent radical suspension polymerization. That is, a mixture of styrene, divinyl benzene, trimethyol propane trimethacrylate (TMPTMA), and PIP containing an initiator was permeated through the uniform pores of the SPG membrane into a continuous phase containing a stabilizer to form uniform droplets. Then, the suspension polymerization was carried out at 65 °C for 24 h. The trifunctional crosslinker TMPTMA was added to enhance the destructive strength of the microsphere, and PIP was incorporated into the microsphere to provide an adhesion force by a known self‐curing reaction at 220 °C. The effects of the feed amounts of TMPTMA and PIP on the monomer conversion, size distribution, and destructive strength of the microsphere were investigated. The monomer conversion increased with an increase in TMPTMA. The particle size distribution became narrower as the TMPTMA feed amount increased, but it became broader with an increase in PIP. The destructive strength increased with increases in TMPTMA and PIP. After a heat treatment at 220 °C, the destructive strength decreased because of the heat degradation of the polymer. The addition of TMPTMA suppressed the heat degradation, and PIP could undergo self‐curing at 220 °C. The obtained highly crosslinked uniform microsphere containing PIP has potential applications in liquid‐crystal displays. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2588–2598, 2003  相似文献   

11.
This work is an extension of a communication reported by two of the authors [Carro and Herrera‐Ordoñez, Macromol Rapid Commun 2006, 27, 274], where bimodal particle size distributions (PSD), obtained by asymmetric flow‐field flow fractionation (AFFF, AF4), were taken as evidence of certain degree of stability of primary particles. Now, emulsion polymerizations of styrene were performed under conditions employed before by other researchers, intending to examine if the behavior observed is general. The number of particles (N) and PSD were studied by means of dynamic light scattering and AF4. By the later, bimodal PSDs were detected in all cases, where the population corresponding to primary particles (diameter <20 nm) depends on reaction conditions. Regarding N, AF4 results show that it is constant during interval II, in contrast to DLS results. Primary particle coagulation was evidenced as minimums in N evolution and the rate of polymerization curves, monitored by calorimetry and gravimetry, which are enhanced when higher particle number is generated and/or the ionic strength is increased. These results suggest that particle coagulation is not as extensive as it would be expected according to the coagulative theory. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3152–3160, 2010  相似文献   

12.
Highly monodisperse polystyrene (PS) microspheres in the size range of 3.75–7.09 μm were synthesized by dispersion polymerization with dropwise monomer feeding procedure. The morphology, size, and particle size distribution (PSD) of the PS microspheres obtained by different monomer feeding modes, including batch polymerization and various feeding rates, were investigated. The PSD of particles showed a close dependence on feeding rate. The PS microspheres with low coefficient of variation (CV) values all less than 4.8% obtained by the optimum feeding rates revealed better uniformity than those by batch polymerization (CV values all more than 8.2%). According to the time courses of monomer conversion and particle numbers, the effects of monomer feeding modes on the polymerization reaction of the large-sized PS microspheres were clarified. It is found that the dropwise monomer feeding procedure is promising for the synthesis of large-sized monodisperse PS particles in 3.75–7.09 μm.  相似文献   

13.
A series of polyurethane (PU) microspheres, based on 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol or a mixture of 1,4‐butanediol and polyether glycol (M = 1400) were synthesized by a one‐step method. The obtained PU microspheres were characterized by infrared spectroscopy, polarizing optical microscopy and dynamic thermogravimetry. Morphology studies of PU microspheres revealed that the material consists of spherical particles with relatively narrow particle size distribution in the range 1–100 µm and preferably between 10 to 50 µm; the obtained polymers were thermally stable up to 533–573 K. Maltogenase from Bacillus stearothermophilus was immobilized onto PU microspheres, synthesized using different ratios of components. High yield (about 100%) and efficiency (over 100%) of immobilization were obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The precipitation polymerization of styrene‐trihydroxymethyl propane triacrylate has been carried out using ethanol and an ethanol/water mixture as the solvent. Uniform microspheres with high monomer conversion are achieved within 4 h, a much shorter polymerization time than that reported for the precipitation polymerization of divinyl benzene‐styrene in acetonitrile. The results clearly demonstrate that use of water as a co‐solvent is indeed very effective to promote the polymerization to high conversion and to obtain uniform microspheres. With no water under the otherwise same experimental conditions, only about 57% of monomer conversion is obtained; while the monomer conversion is remarkably increased to 96% when 12 vol.‐% of water is used.

  相似文献   


15.
16.
The mechanism of the miniemulsion polymerization of styrene was investiaged through a combination of calorimetry to monitor the polymerization rate and transmission electron microscopy (TEM) to follow the evolution of the particle size distribution. These techniques proved to be a powerful combination for gaining detailed mechanistic information regarding these polymerizations. Particle size analysis of the latexes withdrawn during the course of the reaction revealed that most of the polymer particles were formed by a relatively low conversion (i.e., 10% conversion). However, nucleation continued well past this point (to 40-60% conversion). In fact, it was observed that nucleation in miniemulsion polymerizations using cetyl alcohol continued past the maximum in the rate of polymerization. As a result of these long nucleation periods, the latex particle size distributions produced from these miniemulsion polymerizations were broader than their conventional emulsion polymerization counterparts, and were negatively skewed with a tail of small particles. The amount of negative skewing of the particle size distributions was found to decrease with increasing initiator (potassium persulfate) concentration. Finally, a correlation was observed between the length of time to the maximum polymerization rate and the breadth of the particle size distribution as reflected in the standard deviation. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The effect a Co(II) based catalytic chain transfer agent (CCTA) has on the course of the polymerization and the product properties of an emulsion polymerization is governed by the intrinsic activity and the partitioning behavior of the catalyst. The effect on the conversion time history, the molecular weight distribution and the particle size distribution is evaluated in batch emulsion polymerization of methyl methacrylate for three different CCTAs, which cover a range of intrinsic activities and partitioning behaviors. It was demonstrated that radical desorption from the particle phase to the aqueous phase preceded by chain transfer is the main kinetic event controlling the course of the polymerization and the product properties in terms of the particle size distribution. The experimental results show that the aqueous phase solubility of the CCTA is the key parameter controlling the course of the polymerization and the particle size distribution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1038–1048, 2010  相似文献   

18.
To control particle diameter and particle diameter distribution in dispersion copolymerization of styrene and sodium polyaspartate macromonomer containing vinylbenzyl pendant groups, effects of some polymerization parameters, water contents, initiator concentration, styrene monomer concentration, reaction temperature, and type of initiator on the particle diameter and the diameter distribution were investigated. Variation of the water contents from 20 to 80 vol % controls the resultant particle diameter from 0.066 to 0.47 μm. The diameter increased with increasing initiator concentration. This tendency is similar to dispersion polymerization system using a nonpolymerizable stabilizer. Particle diameter distribution broadened with increasing styrene monomer concentration. This trend was attributed to the increase of a period of particle formation. This result indicated that the period of particle formation affected the resultant particle diameter distribution. Particle diameter distribution was successfully improved (CV = 9.1 from 23.6%) by shortening of decomposition time of initiator. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2281–2288, 2009  相似文献   

19.
Particle nucleation in the seeded emulsion polymerization of styrene in the presence of Aerosol‐MA emulsifier micelles and in the absence of monomer droplets (interval III) was investigated. The seed particles were swollen with different amounts of the styrene monomer before the experiments. A larger number of polymer particles formed in interval III than in the corresponding seeded batch operation in the presence of monomer droplets. The increase in the number of particles could be attributed to the reduced rate of growth of new particles, which retarded the depletion of emulsifier micelles. The number of secondary particles initially increased with the initial polymer weight ratio in the seed particles (wp0) but decreased at a higher range of wp0, after reaching a maximum at wp0 = 0.60, and eventually was reduced to zero. At high values of wp0 (>0.75), polymerization occurred in the seed particles, whereas few or no new particles were formed despite the presence of micelles. The cessation of particle formation at high conversions was ascertained with a semibatch process in which the neat monomer feed was added to the reaction vessel containing the seed particles and emulsifier micelles. For wp0 > 0.85, the emulsifier micelles were disintegrated to stabilize the seed particles with no secondary particle formation. The possible reasons for the cessation of particle formation at high wp0 were examined. The size distribution of secondary particles showed a positive skewness in terms of volume because of the declining rate of growth for particles, together with a low rate of growth for small particles. The distribution breadth of new particles sharpened with increasing wp0. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1652–1663, 2002  相似文献   

20.
Single-stage polymerization recently proposed for producing micron-sized polymer particles in aqueous media by Gu, Inukai and Konno (2002) was carried out under the control of agitation with styrene monomer, an amphoteric initiator, 2,2′-azobis [N-(2-carboxyethyl)-2-methylpropionamidine] tetrahydrate and a pH buffer NH3/NH4Cl at a monomer concentration of 1.1 kmol/m3 H2O, an initiator concentration of 10 mol/m3 H2O and a buffer concentration of [NH3] = [NH4Cl] = 10 mol/m3 H2O. In the polymerizations, impeller speed was ranged from 300 to 500 rpm to satisfy complete dispersion of the monomer phase and not to introduce the gas phase from the free surface. Polymerization experiments under steady agitation indicated that impeller speed was an important factor for size distribution of polymer particles. An increase in impeller speed promoted particle coagulation during the polymerization to enlarge the average size of polymer particles but widen the size distribution. To produce polymer particles with narrow size distribution, stepwise reduction in impeller speed was examined in the polymerization experiments. It was demonstrated that this method was more effective than the steady agitation. The impeller speed reduction could produce highly monodisperse particles with an average size of 2 μm and a coefficient of variation of size distributions of 2.2% that was much smaller than typical monodispersity criterion of 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号