首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NaSc3[HPO3]2[HPO2(OH)]6 was prepared by use of a phosphorus acid flux route. The crystal structure was determined from single‐crystal X‐ray diffraction data: triclinic, space group P$\bar{1}$ (No. 2), a = 7.4507(11) Å, b = 9.6253(17) Å, c = 9.6141(16) Å, α = 115.798(4)°, β = 101.395(4)°, γ = 101.136(3)°, V = 577.29(16) Å3 and Z = 1. The crystal structure of NaSc3[HPO3]2[HPO2(OH)]6 contains two kinds of phosphate(III) groups: HPO32– and HPO2(OH). Phosphate(III)‐tetrahedra, NaO6 and ScO6 octahedra together form a (3,6)‐connected net. During heating hydrogen and water are released and Sc[PO3]3 is formed as the main crystalline decomposition product.  相似文献   

2.
Crystal Structures, Vibrational Spectra, and Normal Coordinate Analyses of the Chloro-Iodo-Rhenates(IV) (CH2Py2)[ReCl5I], cis -(CH2Py2)[ReCl4I2] · 2 DMSO, trans -(CH2Py2)[ReCl4I2] · 2 DMSO, and fac -(EtPh3P)2[ReCl3I3] [ReCl5I]2–, cis-[ReCl4I2]2–, trans-[ReCl4I2]2–, and fac-[ReCl3I3]2– have been synthesized by ligand exchange reactions of [ReI6]2– with HCl and are separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations have been performed on single crystals of (CH2Py2)[ReCl5I] ( 1 ) (triclinic, space group P1 with a = 7.685(2), b = 9.253(2), c = 12.090(4) Å, α = 90.06(2), β = 101.11(2), γ = 95.07(2)°, Z = 2), cis-(CH2Py2)[ReCl4I2] · 2 DMSO ( 2 ) (triclinic, space group P1 with a = 8.662(2), b = 12.109(2), c = 12.9510(12) Å, a = 97.533(11), β = 96.82(2), γ = 89.90(2)°, Z = 2) , trans-(CH2Py2)[ReCl4I2] · 2 DMSO ( 3 ) (triclinic, space group P1 with a = 9.315(7), b = 9.663(3), c = 15.232(3) Å, α = 80.09(2), β = 81.79(4), γ = 83.99(5)°, Z = 2) and fac-(EtPh3P)2[ReCl3I3] ( 4 ) (monoclinic, space group P21/a with a = 17.453(2), b = 13.366(1), c = 19.420(1) Å, β = 112.132(8)°, Z = 4). The crystal structure of ( 1 ) reveals a positional disorder of the anion sublattice along the asymmetric axis. Due to the stronger trans influence of I compared with Cl on asymmetric axes Cl˙–Re–I′ is caused a mean lenghthening of the Re–Cl˙ distances of 0.020 Å (0.8%) and a shortening of the Re–I′ distances of 0.035 Å (1.3%) with regard to symmetrically coordinated axes Cl–Re–Cl and I–Re–I, respectively. Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four chloro-iodo-rhenates(IV) are assigned by normal coordinate analyses. The weakening of the Re–Cl˙ bonds and the strengthening of the Re–I′ bonds is indicated by a decrease or increase of the valence force constants each by 9%.  相似文献   

3.
Structure and Magnetic Properties of Bis{3‐amino‐1,2,4‐triazolium(1+)}pentafluoromanganate(III): (3‐atriazH)2[MnF5] The crystal structure of (3‐atriazH)2[MnF5], space group P1, Z = 4, a = 8.007(1) Å, b = 11.390(1) Å, c = 12.788(1) Å, α = 85.19(1)°, β = 71.81(1)°, γ = 73.87(1)°, R = 0.034, is built by octahedral trans‐chain anions [MnF5]2– separated by the mono‐protonated organic amine cations. The [MnF6] octahedra are strongly elongated along the chain axis (<Mn–Fax> 2.135 Å, <Mn–Feq> 1.842 Å), mainly due to the Jahn‐Teller effect, the chains are kinked with an average bridge angle Mn–F–Mn = 139.3°. Below 66 K the compound shows 1D‐antiferromagnetism with an exchange energy of J/k = –10.8 K. 3D ordering is observed at TN = 9.0 K. In spite of the large inter‐chain separation of 8.2 Å a remarkable inter‐chain interaction with |J′/J| = 1.3 · 10–5 is observed, mediated probably by H‐bonds. That as well as the less favourable D/J ratio of 0.25 excludes the existence of a Haldene phase possible for Mn3+ (S = 2).  相似文献   

4.
By means of alternating current electrochemical synthesis crystals of [C13H15N2]+2[CuCl2.58Br1.42] ( I ) and [C13H15N2]+[Cu2Cl0.67Br2.33] ( II ) have been obtained and structurally characterized. Compound I crystallizes in the orthorhombic system, space group Fddd, a = 7.828(1) Å, b = 26.402(2) Å, c = 28.595(3) Å, Dc = 1.4995(5) g/cm3, Z = 8, R = 0.067 for 2157 reflections. The CuX42– tetrahedra are connected with the organic cations through an electrostatic interaction. Crystals of II are monoclinic, space group P21/c, a = 9.2293(8) Å, b = 22.1332(9) Å, c = 9.2939(9) Å, β = 118.021(4)°, Dc = 2.1251(5) g/cm3, Z = 4, R = 0.042 for 2858 reflections. A tetrahedral environment of the Cu1 atom involves four halide atoms, whereas Cu2 possesses a trigonal‐pyramidal coordination with the C=C‐bond and three halide atoms.  相似文献   

5.
Ethylenediamine (en) solutions of [P7M(CO)3]3– (M = Cr, W) react with weak acids to give [HP7M(CO)3]2– ions where M = Cr ( 4 a ) and W ( 4 b ) in high yields. Competition studies with known acids revealed a pKa range for 4 b in DMSO of 17.9 to 22.6. The [P7M(CO)3]3– complexes also react with one-half equivalent of I2 to give 4 through an oxidation/hydrogen atom abstraction process. Labeling studies show that the abstracted hydrogen originates from the [K(2,2,2-crypt)]+ ions or from the solvent (DMSO-d6) in the absence of [K(2,2,2-crypt)]+ or other good hydrogen atom donors. In the solid state, the ions have no crystallographic symmetry but in solution they show virtual Cs symmetry (31P NMR spectroscopy) due to an intramolecular wagging process. Crystallographic data for [K(2,2,2-crypt)]2[HP7W(CO)3]: triclinic, P 1, a = 10.9709(8) Å, b = 13.9116(10) Å, c = 19.6400(14) Å, α = 92.435(6)°, β = 93.856(6)°, γ = 108.413(6)°, V = 2831.2(4) Å3, Z = 2, R(F) = 7.65%, R(wF2) = 14.17% for all 7400 reflections. For [K(2,2,2-crypt)]2[HP7Cr(CO)3]: triclinic, P 1, a = 12.000(3) Å, b = 14.795(3) Å, c = 17.421(4) Å, α = 93.01(2)°, β = 93.79(2)°, γ = 110.72(2)°, V = 2877(2) Å3, Z = 2.  相似文献   

6.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

7.
Crystal Structure, Vibrational Spectrum, and Normal Coordinate Analysis of (PNP)2[ReFBr5] · H2O From the complex mixture obtained by oxidative ligand exchange of [ReBr6]2– with BrF3 [ReFBr5]2– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose with 45% yield. The X-ray structure determination of (PNP)2[ReFBr5] · H2O (monoclinic, space group P21/c with a = 21.498(2), b = 13.314(3), c = 23.945(2) Å, β = 105.235(7)°, Z = 4) reveals a completely ordered anion sublattice resulting from the solvent water linked to the F ligand by a hydrogen bond (O–F: 2.758(6) Å). Due to the stronger trans influence of Br compared with F on the F · –Re–Br′ axis the Re–Br′ distance is shortened by 0.6% with regard to symmetrically coordinated axes. Based on the molecular parameters of the X-Ray determination the low temperature (10 K) IR and Raman spectrum of the (Me4N) salt is assigned by a normal coordinate analysis. The strengthening of the Re–Br′ bond due to the trans influence is indicated by an increase of the valence force constant fd(ReBr′) = 1.43 by 8% as compared with fd(ReBr) = 1.32 mdyn/Å of symmetric axes.  相似文献   

8.
Six polynuclear chlorobismuthates are formed in the reaction between BiCl3 and Ph4PCl by variation of the molar ratio of the educts, the solvents and the crystallisation methods: [Ph4P]3[Bi2Cl9] · 2 CH2Cl2, [Ph4P]3[Bi2Cl9] · CH3COCH3, [Ph4P]2[Bi2Cl8] · 2 CH3COCH3, [Ph4P]4[Bi4Cl16] · 3 CH3CN, [Ph4P]4[Bi6Cl22], and [Ph4P]4[Bi8Cl28]. We report the crystal structure of [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 which crystallises with triclinic symmetry in the S. G. P1 No. 2, with the lattice parameters a = 13.080(3) Å, b = 14.369(3) Å, c = 21.397(4) Å, α = 96.83(1)°, β = 95.96(1)°, γ = 95.94(2)°, V = 3943.9(1) Å3, Z = 2. The anion is formed from two face‐sharing BiCl6‐octahedra. [Ph4P]2[Bi2Cl8] · 2 CH3COCH3 crystallises with monoclinic symmetry in the S. G. P21/n, No. 14, with the lattice parameters a = 14.045(5) Å, b = 12.921(4) Å, c = 17.098(3) Å, β = 111.10(2)°, V = 2894.8(2) Å3, Z = 2. The anion is a bi‐octahedron of two square‐pyramids, joined by a common edge. The octahedral coordination is achieved with two acetone ligands. [Ph4P]4[Bi4Cl16] · 3 CH3CN crystallises in the triclinic S. G., P1, No. 2, with the lattice parameters a = 14.245(9) Å, b = 17.318(6) Å, c = 24.475(8) Å, α = 104.66(3)°, β = 95.93(3)°, γ = 106.90(4)°, V = 5486(4) Å3, Z = 2. Two Bi2Cl8 dimers in syn‐position form the cubic anion. Lattice parameters of [Ph4P]3[Bi2Cl9] · CH3COCH3 are also given. The solvated compounds are desolvated at approximately 100 °C. [Ph4P]3[Bi2Cl9] · 2 CH2Cl2 and [Ph4P]3[Bi2Cl9] · CH3COCH3 show the same sequence of phase transitions after desolvation. All compounds melt into a liquid in which some order is observed and transform on cooling into the glassy state.  相似文献   

9.
Crystal Structures, Normal Coordinate Analyses, and 15N NMR and 77Se NMR Chemical Shifts of trans ‐[OsO2(NCO)4]2–, trans ‐[OsO2(NCS)4]2–, and trans ‐[OsO2(SeCN)4]2– The crystal structures of trans‐(Ph3PNPPh3)2[OsO2(NCO)4] ( 1 ) (orthorhombic, space group Pbca, a = 19.278(3), b = 16.674(4), c = 19.982(2) Å, Z = 4), trans(n‐Bu4N)2[OsO2(NCS)4] ( 2 ) (triclinic, space group P1, a = 12.728(3), b = 12.953(3), c = 16.255(6) Å, α = 97.39(4), β = 105.62(2), γ = 95.25(3)°, Z = 2) and trans‐(n‐Bu4N)2[OsO2(SeCN)4] ( 3 ) (tetragonal, space group I4/m, a = 13.406(2), c = 12.871(1) Å, Z = 2) have been determined by single‐crystal X‐ray diffraction analysis, showing the bonding of NCO and NCS via the N atom but the coordination of SeCN via the Se atom to osmium. Based on the molecular parameters of the X‐ray determinations the vibrational spectra have been assigned by normal coordinate analyses. The valence force constants are for 1 fd(OsO) = 6.43, fd(OsN) = 3.32, fd(NC) = 14.50, fd(CO) = 12.80, for 2 fd(OsO) = 6.56, fd(OsN) = 1.75, fd(NC) = 15.00, fd(CS) = 5.50, and for 3 fd(OsO) = 6.75, fd(OsSe) = 0.99, fd(SeC) = 3.23, fd(CN) = 15.95 mdyn/Å. The observed NMR shifts are δ(15N) = –386.6 ( 1 ), δ(15N) = –294.7 ( 2 ) and δ(77Se) = 108.8 ppm ( 3 ).  相似文献   

10.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of the Linkage Isomeric Chlororhodanoiridates(III) trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? By treatment of Na2[IrCl6] with NaSCN in 2N HCl the linkage isomers trans-[IrCl2(SCN)4]3? and trans-[IrCl2(NCS)(SCN)3]3? are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-ray structure determinations on single crystals of trans-(n-Bu4N)3[IrCl2(SCN)4] ( 1 ) (monoclinic, space group P21/a, a = 18.009(4), b = 15.176(3), c = 23.451(4) Å, β = 93.97(2)°, Z = 4) and trans-(Me4N)3[IrCl2(NCS)(SCN)3] ( 2 ) (monoclinic, space group P21/a, a = 17.146(5), b = 9.583(5), c = 18.516(5) Å, β = 109.227(5)°, Z = 4) reveal the complete ordering of the complex anions. The via S or N coordinated thiocyanate groups are bonded with Ir? S? C angles of 105.7–109.7° and the Ir? N? C angle of 171.4°. The torsion angles Cl? Ir? S? C and N? Ir? S? C are 3.6–53.0°. The IR and Raman spectra of ( 1 ) are assigned by normal coordinate analysis using the molecular parameters of the X-ray determination. The valence force constants are fd(IrS) = 1.52 and fd(IrCl) = 1.72 mdyn/Å.  相似文献   

11.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

12.
A new metal borophosphate PbII4{Co2[B(OH)2P2O8](PO4)2}Cl ( 1 ), containing both Pb2+ cations and Cl anions, was hydrothermally synthesized and characterized by powder X‐ray diffraction, ICP, TG/DTA, and FTIR spectroscopic analyses. The crystal structure determination from single‐crystal X‐ray diffraction reveals that compound 1 crystallizes in the trigonal space group R c (No. 167), a = 9.7513(7) Å, c = 91.060(13) Å, V = 7498.7(13) Å3 and Z = 18. Its structure features a new cobalt borophosphate layer {Co2[B(OH)2P2O8](PO4)2}7– built up from CoO5 square pyramids, [B(OH)2P2O8]5– borophosphate trimers and PO4 tetrahedra. Extra‐framework Pb2+ and Cl ions are located at the vacancy of layers to achieve the charge neutrality of the framework. Magnetic measurements indicate that antiferromagnetic interactions exist between Co2+ ions with a negative Weiss constant of –20.3 K.  相似文献   

13.
Novel Halogenochalcogeno(IV) Acids: [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] Systematic studies on halogenochalcogeno(IV) acids containing tellurium and bromine led to the new crystalline phases [H3O(Benzo‐18‐Crown‐6)]2[Te2Br10] ( 1 ) and [H5O2(Dibenzo‐24‐Crown‐8)]2[Te2Br10] ( 2 ). The [Te2Br10]2‐ anions consists of two edge‐sharing distorted TeBr6 octahedra, the oxonium cations are stabilized by crownether. ( 1 ) crystallizes in the monoclinic space group P21/n with a = 14.520(5) Å, b = 22.259(6) Å, c = 16.053(5) Å, β = 97.76(3)° and Z = 4, whereas ( 2 ) crystallizes in the triclinic space group with a = 11.005(4) Å, b = 12.103(5) Å, c = 14.951(6) Å, α = 71.61(3)°, β = 69.17(3)°, γ = 68.40(3)° and Z = 1.  相似文献   

14.
Preparation, Structures, and EPR Spectra of the Rhenium(II) Thionitrosyl Complexes trans -[Re(NS)Cl3(MePh2P)2] and trans -[Re(NS)Br3(Me2PhP)2] The paramagnetic rhenium(II) thionitrosyl compounds trans-[Re(NS)Cl3(MePh2P)2] and trans-[Re(NS)Br3(Me2PhP)2] are characterized by crystal structure diffraction and EPR spectroscopy. Trans-[Re(NS)Cl3(MePh2P)2] is formed during the reduction of (a) [ReNCl2(MePh2P)3] with disulphur dichloride or (b) of mer-[ReCl3(MePh2P)3] with trithiazyl chloride. Trans-[Re(NS)Br3(Me2PhP)2] is the final product of the ligand exchange reaction of mer-[Re(NS)Cl2(Me2PhP)3] with bromine whereby the metal occurred to be simultaneusly oxidized. The crystal structure analyses show for trans-[Re(NS)Cl3(MePh2P)2] (monoclinic, C2/c, a = 13.831(3) Å, b = 13.970(1) Å, c = 14.682(2) Å, β = 95.33(1), Z = 4) and trans-[Re(NS)Br3(Me2PhP)2] (monoclinic, C2/c, a = 33.292(5) Å, b = 8.697(1) Å, c = 17.495(3) Å, β = 115.65(1), Z = 8) linear co-ordinated NS ligands (Re–N–S-angles 180° and 174.8°). The metal atom is octahedrally co-ordinated with the phosphine ligands in trans position to each other. X-band and Q-band EPR spectra of the rhenium(II) thionitrosyl complexes (5 d5 “low-spin” configuration, S = 1/2) are detected in the temperature range 295 ≥ T ≥ 130 K. They are characterized by well resolved 185,187Re hyperfine patterns. The hyperfine parameters are used to get information about the spin-density distribution of the unpaired electron in the complexes under study.  相似文献   

15.
2‐Mercapto‐methyltetrazolate, Smetetraz, acts as monoanionic, monodentate ligand in a number of technetium compounds. Anionic TcV complexes of the types [TcO(Smetetraz)4] and [TcN(Smetetraz)4]2– are formed when (Bu4N)[TcVOCl4] or (Bu4N)[TcVINCl4], respectively, react with Na(Smetetraz). Reduction of the metal takes place in the latter case. (Bu4N)2[TcN(Smetetraz)4] crystallises in the monoclinic space group Pc (a = 9.701(5), b = 17.570(5), c = 16.821(10) Å, β = 96.50(3)°, Z = 2). The Tc atom is situated 0.580(3) Å above the basal plane of a square pyramid which is formed by the sulfur atoms and the nitrido ligand as its apex. The Tc–S bond lengths lie between 2.384(3) and 2.410(3) Å. [Tc(PPh3)(Smetetraz)3(CH3CN)] is formed during the reaction of [TcCl3(PPh3)2(CH3CN)] with NaSmetetraz as blue needles with co‐crystallised solvent toluene (space group C2/c, a = 24.188(4), b = 14.373(1), c = 25.617(5) Å, β = 109.48(1)°, Z = 8). The metal atom is coordinated by PPh3 and CH3CN in the axial position of a trigonal bipyramid. All three aryl rings are on the sterically less strained side of the plane defined by the sulfur atoms. The Tc–S bond lengths range between 2.233(2) and 2.247(2) Å.  相似文献   

16.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

17.
Crystal Structures, Spectroscopic Analysis, and Normal Coordinate Analysis of ( n ‐Bu4N)2[M(ECN)4] (M = Pd, Pt; E = S, Se) The reaction of (NH4)2[PdCl4] or K2[PtCl4] with KSCN or KSeCN in aqueous solutions yields the complex anions [Pd(SCN)4]2–, [Pt(SCN)4]2– and [Pt(SeCN)4]2–, which are converted into (n‐Bu4N) salts with (n‐Bu4N)HSO4. (n‐Bu4N)2[Pd(SeCN)4] is formed by treatment of (n‐Bu4N)2[PdCl4] with (n‐Bu4N)SeCN in acetone. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Pd(SCN)4] (monoclinic, space group P21/n, a = 13.088(3), b = 12.481(2), c = 13.574(3) Å, β = 91.494(15)°, Z = 2), (n‐Bu4N)2[Pd(SeCN)4] (monoclinic, space group P21/n, a = 13.171(2), b = 12.644(2), c = 13.560(2) Å, β = 91.430(11)°, Z = 2) and (n‐Bu4N)2[Pt(SeCN)4] (monoclinic, space group P21/n, a = 13.167(2), b = 12.641(1), c = 13.563(2) Å, β = 91.516(18)°, Z = 2) reveal, that the compounds crystallize isotypically and the complex anions are centrosymmetric and approximate planar. In the Raman spectra the metal ligand stretching modes of (n‐Bu4N)2[Pd(SCN)4] ( 1 ) and (n‐Bu4N)2[Pt(SCN)4] ( 3 ) are observed in the range of 260–303 cm–1 and of (n‐Bu4N)2[Pd(SeCN)4] ( 2 ) and (n‐Bu4N)2[Pt(SeCN)4] ( 4 ) in the range of 171–195 cm–1. The IR and Raman spectra are assigned by normal coordinate analysis using the molecular parameters of the X‐ray determination. The valence force constants are fd(PdS) = 1.17, fd(PdSe) = 1.17, fd(PtS) = 1.44 and fd(PtSe) = 1.42 mdyn/Å. The 77Se NMR resonances are 23 for 2 , –3 for 4 and the 195Pt NMR resonances 549 for 3 and 130 ppm for 4 .  相似文献   

18.
Structural Interactions of Planar and Non‐planar Bis(1,2‐dithiosquarato)metalate Host Lattices with CuII Complexes – Structure and EPR Investigations 1,2‐Dithiosquaratometalates (M = Cu, Ni, Zn) are available by direct synthesis from metal salts with dipotassium‐1,2‐dithiosquarate. The structural influence of the planar and nonplanar host lattice systems (BzlEt3N)2[Cu/Ni(dtsq)2] and (BzlEt3N)2[Cu/Zn(dtsq)2] on the geometrical and electronic structure of the CuII guest complex [Cu(dtsq)2]2– is studied by EPR spectroscopy. The used host lattices (BzlEt3N)2[Ni(dtsq)2] (planar) and (BzlEt3N)2[Zn(dtsq)2] (tetrahedral) are characterized by X‐ray structure analysis. (BzlEt3N)2[Ni(dtsq)2] crystallizes in the triclinic unit cell P1 with a = 9.1021(8) Å, b = 9.4190(8) Å, c = 11.0119(10) Å, α = 92.8560(10)°, β = 95.375(2)°, γ = 104.5180(10)° and Z = 1. (BzlEt3N)2[Zn(dtsq)2] crystallizes in the monoclinic unit cell C2/c with a = 21.1299(14) Å, b = 16.6641(11) Å, c = 13.8324(9) Å, β = 123.9100(10)° and Z = 4. The g and A Cu tensors in the Cu/Ni system are nearly axial symmetric (g|| = 2.122, g = 2.028; A = –159.5 · 10–4 cm–1, A = –36.9 · 10–4 cm–1). The coordination geometry of the CuII guest complex in the tetrahedral Cu/Zn system is rather distorted, which is shown by the changed g and A Cu tensor parameters (g|| = 2.143, g = 2.042; A = –103.0 · 10–4 cm–1, A ≈ –5.0 · 10–4 cm–1). The spin density distribution is discussed using EHT molecular orbital calculations.  相似文献   

19.
The brown crystals of [PMePh3]2[Se2Br6] ( 1 ) and red crystals of [PMePh3]2[SeBr6(SeBr2)2] ( 2 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of methyltriphenylphosphonium bromide. The crystal structures of 1 and 2 has been determined by the X‐ray methods and refined to R = 0.0373 for 2397 reflections and 0.0397 for 3417 reflections, respectively. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 13.202(5) Å, b = 11.954(4) Å, c = 13.418(6) Å, β = 93.08(4)° (193(2)). The crystals of 2 are triclinic, space group with the cell dimensions a = 10.266(3) Å, b = 11.311(3) Å, c = 11.619(2) Å, α = 108.87(2)°, β = 105.72(2)°, γ = 99.40(2)° (193(2) K). In the solid state structure of 1 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square planar SeBr4 units sharing a common edge through two μ‐bridging Br atoms. The terminal SeII–Br bonds are 2.3984(11) and 2.4273(11) Å, whereas the bridging μBr–SeII bonds are 2.7817(11) and 2.9081(12) Å. In the solid state the trinuclear [SeBr6(SeBr2)2]2? anion of 2 is centrosymmetric too and contains a nearly regular [SeBr6] octahedron where the four equatorial bromo ligands each have developed bonds to the SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0603(15) and 3.1043(12) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The SeIV–Br distances are in the range 2.5570(9)–2.5773(11) Å and the SeII–Br bond lengths in coordinated SeBr2 molecules – 2.3411(12) and 2.3421(10) Å.  相似文献   

20.
The reaction of W6Br12 with CuBr sealed in an evacuated silica tube at the temperature gradient 925/915 K and annealing at 625/300 K yields a mixture of orthorhombic α-Cu2[W6Br14] and cubic β-Cu2[W6Br14] in the low temperature zone. α-Cu2[W6Br14] crystallizes in the space group Pbca (no. 61), a = 15.126 Å, b = 9.887 Å, c = 15.954 Å, Z = 4, oP88, and β-Cu2[W6Br14] crystallizes in the space group Pn3 (no. 201), a = 13.391 Å, Z = 4, cP88. The crystal structures are built up by [(W6Br)Br]2– cluster anions and Cu+ cations. The cluster anions show only in the peripheral shells small deviation from m3m symmetry (d(W–W) = 2.630 Å; d(W–Bri) = 2.618 Å; d(W–Bra) = 2.614 Å). The anions are arranged in a slightly compressed bcc pattern (α) and ccp (β) pattern, respectively. The Cu+ cations are trigonal-planar coordinated by Bra ligands with d(Cu–Br) = 2.377 Å (α) and 2.378 Å (β). The cubic β-modification is diamagnetic with an unexpected large susceptibility (χmol = –884 × 10–6 cm3 mol–1) and have a band gap of 2.8 eV. It decomposes under dynamic vacuum in two steps at 795 K und 1040 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号