首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium has been suggested as a potential biodegradable metal for the usage as orthopaedic implants. However, high degradation rate in physiological environment remains the biggest challenge, impeding wide clinical application of magnesium‐based biomaterials. In order to reduce its degradation rate and improve the biocompatibility, micro‐arc oxidation coating doped with HA particles (MAO‐HA) was applied as the inner coating, and polydopamine (PDA) film was synthesized by dopamine self‐polymerization as the outer coating. The microstructure evolution of the coating was characterized using scanning electron microscopy (SEM), atomic force microscope (AFM), X‐ray diffraction analyses (XRD), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray photoelectron spectroscopy (XPS). The results showed that PDA film had covered the entire surface of MAO‐HA coating and the pore size of MAO‐HA coating decreased. The root mean square (RMS) roughness of PDA/MAO‐HA coatings was approximately 106.46 nm, which was closer to the optimum surface roughness for cellular attachment as compared with MAO‐HA coatings. Contact angle measurement indicated that the surface wettability had been transformed from hydrophobic to hydrophilic due to the introduction of PDA. The PDA/MAO‐HA coatings exhibited better corrosion resistance in vitro, with the self‐corrosion potential increasing by 150 mV and the corrosion current density decreasing from 2.09 × 10?5 A/cm 2 to 1.46 × 10?6 A/cm 2 . In hydrogen evolution tests, the corrosion rates of the samples coated with PDA/MAO‐HA and MAO‐HA were 4.40 and 5.95 mm/y, respectively. MTS assay test and cell‐surface interactions experiment demonstrated that PDA/MAO‐HA coatings exhibited good cellular compatibility and could promote the adhesion and proliferation of MC3T3‐E1 cells.  相似文献   

2.
The use of titanium‐based alloys as biomaterials is becoming more common because they have a reduced elastic modulus, superior biocompatibility, specific strength, good corrosion resistance, superior strain control, and fatigue resistance compared to conventional stainless steel and Co? Cr alloys. However, when implanted into the human body these metals are problematic because they do not directly bond with living bone. Surface treatments play an important role in nucleating calcium phosphate deposition on a surgical titanium alloy implant. The purpose of this study is to examine whether the precipitation of apatite on Ti? 10Ta? 10Nb alloy is affected by surface modification in H2O2 solution. Specimens were chemically treated with a solution containing 30 wt% H2O2 at 80 °C for 1 h, and subsequently heat treated at 400 °C for 1 h. All specimens were immersed in SBF (Simulated Body Fluid) with a pH of 7.4 at 36.5 °C for seven days, and the surfaces were examined with XRD, SEM, EDX and in vitro testing. The microstructure analysis of the Ti? 10Ta? 10Nb alloy after etching with Keller's etchant showed a Widmanstatten pattern. The micro‐Vickers hardness number was 236.44 ± 4.99, and surface roughness was increased by the surface treatment. The wettability after surface treatment was better than on the nontreated surface. Resistance to cytotoxicity was decreased by the chemical surface treatment (P < 0.05). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Alkali treatment of the Ti‐6Al‐7Nb alloys with subsequent heat treatment has been adopted as an important surface treatment procedure for apatite formation in dental implants. This study examined the effects of alkali treatment on the precipitation of apatite on a Ti‐6Al‐7Nb alloy. All samples were immersed in a Hanks' Balanced Salts Solution [simulated body fluid (SBF)] at pH 7.4 and 36.5 °C for 15 days. The surface structural changes of samples due to the alkali treatment and immersing in SBF were analyzed by XRD, SEM and XPS. The cell toxicity was evaluated based on the optical density of the surviving cells. The samples were implanted into the abdominal connective tissue of mice for 4 weeks. A sodium titanate hydrogel layer was formed after immersion in an NaOH solution. A dense and uniform bone‐like apatite layer precipitated on the alkali and heat‐treated Ti‐6Al‐7Nb alloy in the SBF. There was a significant difference in cell toxicity between the treated and untreated Ti‐6Al‐7Nb (P < 0.05). The thickness of the fibrous capsule formed around the implant body was decreased significantly by the alkali and heat treatment (P < 0.05). The alkali treatment samples showed a better biocompatibility than the commercial metal samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The Ni–P alloy coatings were obtained on alumina borate whisker‐reinforced pure aluminum composite by electro‐deposition. The initial electro‐deposition behavior of the Ni–P alloys on the composite and pure aluminum was studied, respectively. It was found that the composition and the morphology of materials had a distinct effect on the initial electro‐deposition behavior of the Ni–P alloys. The Ni–P alloy coatings preferred to nucleate at the composite as compared with the pure aluminum. Moreover, the Ni–P particles were prone to deposit at the whisker/Al interface in the composite. The Ni–P coatings were barely depositing upon the surface of whisker during the plating process. As the deposition time increased, the Ni–P particles that were deposited on the surface of the composite grew gradually. These Ni–P particles linked to each other and eventually covered the whisker surface. Moreover, it can be found that the surfaces of the composite were gradually covered by Ni–P coatings and the anticorrosion performance of the coated composite increased remarkably with the increase in the deposition time. When the deposition time is 60 min, only the Ni–P diffraction peak could be detected. In this case, the coated composite had significantly better corrosion resistant, which is attributed to the surface of composite was perfectly covered by the Ni–P coatings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Exploiting a superhydrophobic surface is very significant due to its excellent water repellency which has many practical applications in various fields. In this work, the cobalt incorporated amorphous carbon‐based (Co/a‐C:H) film was prepared successfully on Si substrate via a simple 1‐step electrochemical deposition where electrochemical deposition technology was using cobalt (II) acetylacetonate methanol solution as electrolyte under high voltage, atmospheric pressure, and low temperature. Surprisingly, the as‐prepared film showed a superior superhydrophobic surface with a water contact angle of 153 ± 1° and a sliding angle of 7.6° without any further modification of low surface energy materials. Especially, the tape adhesive, corrosion resistance, and self‐cleaning tests demonstrated that the as‐prepared carbon‐based film could possess fairly well adhesion, superior anti‐corrosion resistance, and self‐cleaning ability, respectively. It indicated that the superhydrophobic Co/a‐C:H film might have potential promising applications in the field of anti‐fouling, anti‐corrosion, and drag resistance, such as the above‐deck structures on icebreaker vessels, ship hulls, and offshore wind turbine blades.  相似文献   

6.
Single‐bi‐layer of Ni–Ti thin film was deposited using DC and RF magnetron sputtering technique by layer‐wise deposition of Ni and Ti on Si(100) substrate in the order of Ni as the bottom layer and Ti as the top layer. The deposition of these amorphous as‐deposited thin films was followed by annealing at 300 °C, 400 °C, 500 °C, and 600 °C temperature with 1‐h annealing time for each to achieve crystalline thin films. This paper describes the fabrication processes and the novel characterization techniques of the as‐deposited as well as the annealed thin films. Microstructures were analysed using FESEM and HRTEM. Nano‐indentation and AFM were carried out to characterize the mechanical properties and surface profiles of the films. It was found that, for the annealing temperatures of 300 °C to 600 °C, the increase in annealing temperature resulted in gradual increase in atomic‐cluster coarsening with improved ad‐atom mobility. Phase analyses, performed by GIXRD, showed the development of silicide phases and intermetallic compounds. Cross‐sectional micrographs exhibited the inter‐diffusion between the two‐layer constituents, especially at higher temperatures, which resulted either in amorphization or in crystallization after annealing at temperatures above 400 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The influence of pulse plating parameters on the surface morphology, grain size, lattice imperfection and corrosion properties of Zn–Ni alloy has been studied. The coatings were electrodeposited in an alkaline cyanide-free solution. AFM was applied for surface morphology examination, XRD measurements were carried out for phase composition and texture analysis, electron probe microanalysis was used for alloy chemical composition studies, while electrochemical techniques were applied for corrosion performance evaluation. The pulse plated Zn–Ni coatings appeared to consist of the γ-Zn21Ni5 phase and the composition of the alloy depended on the plating parameters. The grain size, lattice imperfection and homogeneity of grain distribution were established to be the main factors determining corrosion behaviour of the coating. Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, March 13–16, 2005  相似文献   

8.
Ti–13Nb–13Zr was coated with diamond‐like carbon (DLC) and zirconium‐doped DLC by plasma‐enhanced chemical vapor deposition and sputtering. The corrosion current of the substrate is not affected after coating, and corrosion potential shifts towards nobler values in Hanks' solution. Electrochemical impedance spectroscopy studies show that Zr‐DLC samples behave like an ideal capacitor. Field emission scanning electron microscopy (FESEM) images after 7 days of immersion show absence of apatite on DLC‐coated sample and its presence on Zr‐doped DLC, but to a lesser extent as compared with that on the uncoated substrate. XPS and Energy‐dispersive X‐ray spectroscopy (EDS) of samples immersed in Hanks' solution show presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Zr‐DLC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(2,3‐dimethylaniline)/nano‐Al2O3 composite (PAC) was synthesized by emulsion polymerization using dodecyl benzene sulfonic acid as emulsifier and dopant. The structure of PAC was characterized by Fourier fransformation infrared spectroscopy, UV–visible adsorption spectroscopy, and field emission scanning electron microscopy. The thermal stability was studied by thermogravimetric analysis, and the electrochemical performances were studied by cyclic voltammetry measurements. Epoxy coatings containing PAC and poly(2,3‐dimethylaniline) (P(2,3‐DMA)), respectively, were painted on steel, and accelerated immersion tests were performed to evaluate the anticorrosion property of the coatings in 3.5% NaCl solution. The results showed that the addition of PAC and P(2,3‐DMA) could improve the anticorrosion performance of epoxy coating significantly and the PAC coating had higher corrosion resistance than that of P(2,3‐DMA). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of adding alfa‐Al2O3 nanoparticles with different concentrations into Watt's bath under the application of ultrasound during electrodeposition was investigated by means of electrochemical impedance spectroscopy (EIS) in the galvanostatic mode. The characteristics of the double layer during nickel deposition were affected by the existence of Al2O3 nanoparticles in the electrolyte. In this study, the results of the impedance were correlated with the layer properties, e.g. the mean grain size, the incorporation of particles in the deposit and the strengthening performance. It became obvious that there is a good relationship between the EIS data and layer properties, which makes the impedance spectroscopy a reliable tool for predicting the properties in dispersion coatings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new series of (Y2‐yLiy)Ti2O7‐y having an ordered pyrochlore phase was prepared by a solid state reaction method with a solid solution range of 0.05 ≥ y ≥ 0.10. Unit cell parameters obtained by the Rietveld refinement method shows that the a‐axis decreases linearly with increasing the amount of Li ion addition, indicating the successful incorporation of the Li ion into unit cell. The average x‐fractional coordinate of the O(1) site depends on the ionic radius ratio of r(A3+)/r(Ti4+) in the A2Ti2O7 with a pyrochlore phase. The Ti K‐edge XANES spectra of the (Y2‐yLiy)Ti2O7‐y show that the valence of the Ti ions is slightly less than 4 so that Ti is in the mixed valence state. Average particle size increases with increasing the amount of extra Li ion addition, which acts as a flux to lower the melting point of the materials.  相似文献   

13.
《中国化学》2018,36(7):619-624
A synthetic protocol to lactones by electro‐oxidative induced C—H activation of 2‐arylbenzoic acids has been developed. By using Na2SO4 aqueous solution as a cheap and green supporting electrolyte, different 2‐arylbenzoic acids could provide the corresponding lactones in 30%—90% yields. This reaction could be conducted on a gram scale with a good efficiency as well as a high utility for natural product synthesis.  相似文献   

14.
本文合成了并培养出了七-O-乙酰基—β—乳糖异硫氰酸酯的单晶,用X射线衍射分析了其晶体结构。结果表明,晶体为正交晶系,P212121空间群,a=1.23282(7),b=1.80012(10),c=1.85230(10) nm,α=β=γ=90°,V=4.1107(4) nm3,Z=4。电化学实验观测到单链DNA和双链DNA对该化合物的峰电流均有明显降低作用,表明化合物与DNA发生了静电作用。  相似文献   

15.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

16.
In this work, a calcium silicate and calcium phosphate (CaSiO3/CaHPO4 · 2H2O) composite coating was applied by a chemical reaction to an extruded Mg‐Zn‐Ca magnesium alloy. SEM observation showed that a flat and sand‐like conversion coating was formed. X‐ray diffractometer (XRD) analysis indicated that the conversion coating was composed of CaHPO4 · 2H2O and a little amount of CaSiO3. The formation mechanism of CaSiO3/CaHPO4 · 2H2O composite conversion coatings was discussed. The electrochemical polarization tests showed that the conversion coating markedly improved the biocorrosion resistance of Mg‐Zn‐Ca alloy in Hank's solution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Tandem Friedel‐Crafts (FC) and C?H/C?O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6F5)3) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4‐dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6F5)3 can activate the C=C and C?O bond for FC and C?H/C?O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C?H/C?O coupling.  相似文献   

18.
Electrochemically co‐deposited sol–gel/Cu nanocomposites have been introduced as a novel, simple and single‐step technique for preparation of solid‐phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol–gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC‐UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL−1. Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency.  相似文献   

19.
A photoredox catalytic ensemble consisting of CuO‐Fe2O3 nanocomposites and oligomeric derivative of phenazine has been developed. The prepared system acts as an efficient photoredox catalyst for C?N bond formation reaction via SET mechanism under ‘green’ conditions (aerial environment, mixed aqueous media, recyclable), requiring less equivalents of base and amine substrate. The present study demonstrates the significant role of supramolecular assemblies as photooxidants and reductants upon irradiation and their important contribution towards the activation of the metallic centre through energy transfer and electron transfer pathways. The potential of oligomer 4 : CuO‐Fe2O3 has also been explored for C?C bond formation reactions via the Sonogashira protocol.  相似文献   

20.
Pt‐Co/Al2O2 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of me catalyst was sensitive to calcination temperature. When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt‐Co/ Al2O3 > Pt/Al2O3 > Co/Al2O3. With 9% Co, the Co/Al2O3 calcined at 923 K was also active for CO2 reforming of CH4, however, its carbon formation was much more fast man that of the Pt‐Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, Co/Al2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre‐reduction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from Co/Al2O4 reduction are responsible for high activity of the Pt‐Co/Al2O3 catalyst, and the remain Co/Al2O4 is beneficial to suppression of carbon deposition over the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号