首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sequential block copolymerization of 4,4′‐vinylphenyl‐N,N‐bis(4‐tert‐butylphenyl)benzenamine ( A ) with 2‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( B ) was simply carried out using only potassium naphthalenide (K‐Naph) as an initiator without any additives in tetrahydrofuran (THF) at ?78 °C. The well‐defined functional block copolymers containing A block as an electron donor and B block as a weak electron acceptor had predictable molecular weights (Mn = 8,800–14,500 g/mol) and narrow molecular weight distributions (Mw/Mn = 1.09–1.10). The bicontinuous microphase‐separated film morphology of the precisely synthesized poly( B ‐b‐ A ‐b‐ B ) (P BAB ) with 0.71 of fpoly( A ), formed by thermal annealing at 230 °C for 9 h, was expected to be a potential active layer for nonvolatile memory device applications. Indium tin oxide (ITO)/P BAB /aluminum (Al) memory devices with an 8 × 8 cross‐bar array structure exhibited nonvolatile resistive switching characteristics. The memory devices showed reliable memory performance in terms of ON/OFF ratios of ~104, endurance cycles and retention time, and statistical data with regard to cumulative probability of the switching currents and threshold voltage distribution. Filamentary conduction mechanism was proposed to explain the switching of P BAB ‐based memory devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2625‐2632  相似文献   

2.
The block copolymerization of 4,4′‐vinylphenyl‐N,N‐bis(4‐tert‐butylphenyl)benzenamine ( A ) with 2‐(2‐(4‐vinylphenyl)ethynyl)pyridine ( B ) was performed using sec‐butyllithium (s‐BuLi) as an initiator in the absence and presence of potassium tert‐butoxide (KOBut) in tetrahydrofuran (THF) at ?78 °C. The block copolymerization was not successful in the absence of KOBut, whereas the well‐defined diblock copolymer (poly( A ‐b‐ B )) containing pendent triphenylamine and ethynylpyridine was successfully synthesized in the presence of excess KOBut due to the change in the countercation from Li+ to K+ and the suppression of ion dissociation by the salt common effect. The poly( A ‐b‐ B )s had predictable molecular weights (Mn = 4,900–20,000 g/mol) and narrow molecular weight distributions (Mw/Mn = 1.13–1.15). In addition, the resulting block copolymer showed good solubility and excellent thermal properties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4233–4239  相似文献   

3.
To study living anionic polymerization, 3‐(triethylsilyl)propyl isocyanate (TEtSPI) monomer was synthesized by hydrosilylation of allylamine with triethylsilane and treatment of the resulting amine with triphosgene. The polymerization of TEtSPI was performed with sodium naphthalenide (Na‐Naph) as an initiator and in the absence and presence of sodium tetraphenylborate (NaBPh4) as an additive in tetrahydrofuran (THF) at ?78 and at ?98 °C. A highly stabilized amidate anion for living polymerization of isocyanates was generated for the first time with the combined effect of the bulky substituent and the shielding action of the additive NaBPh4, extending the living character at least up to 120 min at ?98 °C. Even the anion could exist at ?78 °C for 10 min. A block copolymer, poly(n‐hexyl isocyanate)‐b‐poly[(3‐triethylsilyl)propyl isocyanate]‐b‐poly(n‐hexyl isocyanate), was synthesized with quantitative yields and controlled molecular weights via living anionic polymerization in THF at ?78 °C for TEtSPI and ?98 °C for n‐hexyl isocyanate, respectively, with Na‐Naph with three times of NaBPh4 as a common ion salt. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 933–940, 2004  相似文献   

4.
For the synthesis of aromatic polyesters with defined molecular weights and narrow molecular weight distributions (MWDs), we investigated the chain‐growth polycondensation of active amide derivatives of 4‐hydroxybenzoic acid, 1a and 1b , having an octyl or 4,7‐dioxaoctyl side chain, respectively. To suppress the transesterification of the polymer backbone with the monomer, the polymerization of 1 was carried out in tetrahydrofuran (THF) at −30 °C in the presence of initiator 2 and Et3SiH/CsF/18‐crown‐6, which generated a hydride ion as a base in situ. The number‐average molecular weight (Mn) of poly 1a was controlled, and narrow MWDs were maintained, until the [ 1a ]0/[ 2 ]0 feed ratio was 14.3 (Mn ≤ 3500), whereas that of poly 1b was controlled until the feed ratio was 30 (Mn ≤ 7250). The difference stemmed from the higher solubility of poly 1b in THF. This chain‐growth polycondensation was applied to the synthesis of a diblock copolyester of 1a and 1b of a defined architecture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4109–4117, 2005  相似文献   

5.
Amphiphilic monomers containing the isomeric pyridine moieties 3‐(4‐vinylphenyl)pyridine (3VPPy) and 4‐(4‐vinylphenyl)pyridine (4VPPy) were synthesized using the Suzuki coupling reaction. A living anionic polymerization of 3VPPy and 4VPPy was successfully performed under various conditions to overcome the limitations of anionic polymerization and to compare their properties with those of poly(2‐(4‐vinylphenyl)pyridine) as reported previously. Several characteristics of the resulting isomeric P3VPPy and P4VPPy were studied, such as thermal stability, solubility, and the living nature. The block copolymerization of 4VPPy with 2‐vinylpyridine and MMA was carried out without additive to estimate the nucleophilicity of P4VPPy and to confirm its living nature. Additionally, each amphiphilic homopolymer of P3VPPy and P4VPPy containing both a hydrophilic pyridine unit and a hydrophobic styrene unit was tested for self‐assembly behavior in a mixed solvent (THF/water) and monitored with TEM and SEM. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3458–3469  相似文献   

6.
N‐(4‐Tetrahydropyranyl‐oxy‐phenyl)maleimide (THPMI) was prepared and polymerized by radical or anionic initiators. THPMI could be polymerized by 2,2′‐azobis(isobutyronitrile) (AIBN) and potassium tert‐butoxide. Radical polymers (poly(THPMI)r) were obtained in 15–50% yields for AIBN in THF at 65°C after 2–5 h. The yield of anionic polymers (poly(THPMI)a) obtained from potassium tert‐butoxide in THF at 0°C after 20 h was 91%. The molecular weights of poly(THPMI)r and poly(THPMI)a were Mn = 2750–3300 (Mw/Mn = 1.2–3.3) and Mn = 11300 (Mw/Mn = 6.0), respectively. The difference in molecular weights of the polymers was due to the differences in the termination mechanism of polymerization and the solubility of these polymers in THF. The thermal decomposition temperatures were 205 and 365°C. The first decomposition step was based on elimination of the tetrahydropyranyl group from the poly(THPMI). Positive image patterns were obtained by chemical amplification of positive photoresist composed of poly(THPMI) and 4‐morpholinophenyl diazonium trifluoromethanesulfonate used as an acid generator. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 341–347, 1999  相似文献   

7.
Stable potassium enolates of N,N‐diethylacetamide [α‐potassio‐N,N‐diethylacetamide ( 1 )], N,N‐diethylpropionamide [α‐potassio‐N,N‐diethylpropionamide ( 2 )], and N,N‐diethylisobutyramide [α‐potassio‐N,N‐diethylisobutyramide ( 3 )] were prepared by the proton abstraction of the corresponding N,N‐diethylamides with diphenylmethylpotassium (Ph2CHK) or potassium naphthalenide in THF. The relative nucleophilicity of 1 – 3 was estimated to be in the order of 1 < 3 < 2 from the results of the alkylation reaction with methyl iodide. N,N‐diethylacetamide transferred its α‐proton to 2 quantitatively in THF at 0 °C, whereas no reaction occurred between N,N‐diethylisobutyramide and 2 ; this indicated the relative basicity to be 1 < 2 ~ 3 . Anionic polymerizations of N,N‐diethylacrylamide (DEA) and methyl methacrylate were quantitatively initiated with 2 in THF at ?78 °C, whereas the initiation efficiencies of 2 for styrene and 2‐vinylpyridine were about 2 and 67%, respectively. The initiation of DEA with 1 – 3 at ?78 or 0 °C in THF gave poly (DEA)s having broad molecular weight distributions (MWDs; Mw/Mn = 2) and ill‐controlled molecular weights. In contrast, poly(DEA)s of narrow MWDs (Mw/Mn < 1.2) and predicted Mn's were obtained with 2 in the presence of diethylzinc (Et2Zn) at ?78 °C, whereas the initiations with 1 /Et2Zn and 3 /Et2Zn at ?78 °C resulted in poor control of the molecular weights. At the higher temperature of 0 °C, all the binary initiator systems ( 1 – 3 /Et2Zn) induced controlled polymerizations of DEA in terms of the conversion, molecular weight, and MWD. The poly(DEA)s produced with 1 – 3 /Et2Zn at 0 °C showed mr‐rich configurations (mr = 76–89%), as observed for the poly(DEA) generated with Ph2CHK/Et2Zn. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1260–1271, 2007  相似文献   

8.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

9.
To check the possibility of living polymerization with a biscyclopentadienyl metallocene, propylene polymerization was conducted by Cp2ZrMe2 at –78°C or Cp2HfMe2 at –50°C using B(C6F5)3 and AlOct3 as a cocatalyst. The polymer yield increased linearly with polymerization time. The polypropylene obtained showed narrow molecular weight distribution (Mw/Mn 1.04–1.15). In addition, the number-average molecular weight increased in proportion to the polymerization time. It was, thus, found that living polymerization of propylene proceeds with the catalyst systems at a very low temperature. Isospecific living polymerization of 1-hexene also proceeded with the rac-(et)Ind2ZrMe2 catalyst at –78°C.  相似文献   

10.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

11.
This article describes the synthesis and characterization of [polystyrene‐b‐poly(2‐vinylpyridine)]n star‐block copolymers with the poly(2‐vinylpyridine) blocks at the periphery. A two‐step living anionic polymerization method was used. Firstly, oligo(styryl)lithium grafted poly(divinylbenzene) cores were used as multifunctional initiators to initiate living anionic polymerization of styrene in benzene at room temperature. Secondly, vinylpyridine was polymerized at the periphery of these living (polystyrene)n stars in tetrahydrofuran at ?78 °C. The resulting copolymers were characterized using size exclusion chromatography, multiangle laser light scattering, 1H NMR, elemental analysis, and intrinsic viscosity measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3949–3955, 2007  相似文献   

12.
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   

13.
To study the possibility of living cationic polymerization of vinyl ethers with a urethane group, 4‐vinyloxybutyl n‐butylcarbamate ( 1 ) and 4‐vinyloxybutyl phenylcarbamate ( 2 ) were polymerized with the hydrogen chloride/zinc chloride initiating system in methylene chloride solvent at ?30 °C ([monomer]0 = 0.30 M, [HCl]0/[ZnCl2]0 = 5.0/2.0 mM). The polymerization of 1 was very slow and gave only low‐molecular‐weight polymers with a number‐average molecular weight (Mn) of about 2000 even at 100% monomer conversion. The structural analysis of the products showed occurrence of chain‐transfer reactions because of the urethane group of monomer 1 . In contrast, the polymerization of vinyl ether 2 proceeded much faster than 1 and led to high‐molecular‐weight polymers with narrow molecular weight distributions (MWDs ≤ ~1.2) in quantitative yield. The Mn's of the product polymers increased in direct proportion to monomer conversion and continued to increase linearly after sequential addition of a fresh monomer feed to the almost completely polymerized reaction mixture, whereas the MWDs of the polymers remained narrow. These results indicated the formation of living polymer from vinyl ether 2 . The difference of living nature between monomers 1 and 2 was attributable to the difference of the electron‐withdrawing power of the carbamate substituents, namely, n‐butyl for 1 versus phenyl for 2 , of the monomers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2960–2972, 2004  相似文献   

14.
Chain‐growth condensation polymerization of p‐aminobenzoic acid esters 1 bearing a tri(ethylene glycol) monomethyl ether side chain on the nitrogen atom was investigated by using lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS) as a base. The methyl ester monomer 1a afforded polymer with low molecular weight and a broad molecular weight distribution, whereas the polymerization of the phenyl ester monomer 1b at ?20 °C yielded polymer with controlled molecular weight (Mn = 2800–13,400) and low polydispersity (Mw/Mn = 1.10–1.15). Block copolymerization of 1b and 4‐(octylamino)benzoic acid methyl ester ( 2 ) was further investigated. We found that block copolymer of poly 1b and poly 2 with defined molecular weight and low polydispersity was obtained when the polymerization of 1b was initiated with equimolar LiHMDS at ?20 °C and continued at ?50 °C, followed by addition of 2 and equimolar LiHMDS at ?10 °C. Spherical aggregates were formed when a solution of poly 1b in THF was dropped on a glass plate and dried at room temperature, although the block copolymer of poly 1b and poly 2 did not afford similar aggregates under the same conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1357–1363, 2010  相似文献   

15.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

16.
Poly[2‐(3‐nitrocarbazolyl)ethyl methacrylate] (poly(NCzMA)) with controlled molecular weight and narrow molecular weight distribution was successfully synthesized using (methyl methacryloyl)potassium (MMA) as a weak initiator in the presence of diethylzinc (Et2Zn) in THF at –78°C. Et2Zn acted both as an additive for the coordination with enolate anion and nitro group and as a scavenger to remove impurities. Block copolymers PMMA‐block‐poly(NCzMA)‐block‐PMMA and poly(NCzMA)‐block‐PS‐block‐poly(NCz‐MA), were also synthesized quantitatively (PMMA: poly(methyl methacrylate), PS: polystyrene). The results indicate that Et2Zn can be used to synthesize the polymers of solid, nitro group‐containing methacrylate monomers by anionic polymerization in THF.  相似文献   

17.
A chiral polyisocyanate, poly[6‐{1‐[(S)‐(–)‐2‐methylbutyl]oxycarbonylamino}hexyl isocyanate], was synthesized using sodium diphenylmethanide and sodium naphthalenide as unidirectional and bidirectional initiators, respectively, via anionic polymerization in THF at –98°C. NaBPh4 as a common ion salt was used to produce the polymer in quantitative yield and with narrow molecular‐weight distribution. The polymer showed different optical activity depending on the nature of the initiator.  相似文献   

18.
A quite small dose of a poisonous species was found to induce living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at 0 °C. In the presence of a small amount of N,N‐dimethylacetamide, living cationic polymerization of IBVE was achieved using SnCl4, producing a low polydispersity polymer (weight–average molecular weight/number–average molecular weight (Mw/Mn) ≤ 1.1), whereas the polymerization was terminated at its higher concentration. In addition, amine derivatives (common terminators) as stronger bases allow living polymerization when a catalytic quantity was used. On the other hand, EtAlCl2 produced polymers with comparatively broad MWDs (Mw/Mn ~ 2), although the polymerization was slightly retarded. The systems with a strong base required much less quantity of bases than weak base systems such as ethers or esters for living polymerization. The strong base system exhibited Lewis acid preference: living polymerization proceeded only with SnCl4, TiCl4, or ZnCl2, whereas a range of Lewis acids are effective for achieving living polymerization in the conventional weak base system such as an ester and an ether. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6746–6753, 2008  相似文献   

19.
《中国化学》2018,36(10):934-938
It still remains a concern to break through the bottlenecks of anionic polymerization of polar monomers, such as side reactions, low conversion and low temperature (–78°C). In this work, potassium tert‐butoxide (t‐BuOK) was chosen to initiate the anionic polymerization of 2‐ethylhexyl methacrylate (EHMA) in tetrahydrofuran. The conversions were above 99% at 0 or 30°C, and above 95% at 60°C without side reaction inhibitors. The high conversions implied t‐BuOK could suppress the side reactions. A series of block copolymers of EHMA, n‐hexyl methacrylate (HMA) and methyl methacrylate (MMA) were further synthesized at 0°C, and the conversions were all above 99%. The GPC and 1H NMR results confirmed the successful synthesis of the block copolymers. The molecular size of monomer and the state of t‐BuOK (free ion pairs or aggregates) remarkably affected the polymerization rates and the molecular structures of the products. The DMA results indicated that the glass transition temperatures of PEHMA or PHMA block and PMMA block were 20°C and 60°C, respectively, which deviated from –2°C and 105°C of homopolymer, respectively, due to the partial compatibility of the blocks. This work explored a route of the anionic polymerization of polar monomers at room temperature.  相似文献   

20.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号