首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two complexes, cis‐[MnL2(NCS)2] ( 1 ) and cis‐[ZnL2(NCS)2] ( 2 ) with asymmetrical substituted triazole ligands [L = 3,4‐dimethyl‐5‐(2‐pyridyl)‐1,2,4‐triazole], were synthesized and characterized by elemental analysis, UV/Vis and FT‐IR spectroscopy as well as thermogravimetric analyses (TGA), powder XRD, and single‐crystal X‐ray diffraction. In the complexes, each L molecule adopts a chelating bidentate mode by the nitrogen atoms of pyridyl and triazole. Both complexes have a similar distorted octahedral [MN6] core (M = Mn2+ and Zn2+) with two NCS ions in the cis position.  相似文献   

2.
Three new complexes: [M(L)(H2O)] [M = Zn ( 1 ), Co ( 2 ), Ni ( 3 ); H2L = 5‐(pyridin‐2‐ylmethyl)aminoisophthalic acid] were synthesized under hydrothermal conditions at 180 °C and were characterized by elemental analysis, FT‐IR spectroscopy, single‐crystal X‐ray diffraction, and thermogravimetric analysis (TGA). The results of X‐ray diffraction analysis reveal that complexes 1 – 3 are isostructural and crystallize in the monoclinic system with space group P21/c. Each of the complexes displays a (3,3′)‐connected two‐dimensional (2D) wave‐like network with (4,82) topology, within which five‐membered uncoplanar N,N‐chelated metallacycles are shaped. Delicate N–H ··· O and O–H ··· O hydrogen bonding interactions exist in complexes 1 – 3 . Adjacent 2D layers are linked by intermolecular interactions, resulting in the construction of extended metal‐organic frameworks (MOFs) in complexes 1 and 2 .  相似文献   

3.
The self‐assembly of 4 ‐ MTPP [ 4 ‐ MTPP = 2‐(methylthio)‐4‐(pyridin‐4‐yl)pyrimidine] with Cu(NO3)2 and AgNO3 was structurally investigated. For Cu(NO3)2, a discrete mononuclear CuII coordination compound, [Cu( 4 ‐ MTPP )2(NO3)2] ( 1 ), resulted that is exclusively based on Cu–N coordination. For AgNO3, a unique one‐dimensional double‐chain structure ( 2 ) was obtained with the Ag–N distances varying from 2.181(9) to 2.223(9) Å, and the average Ag–S distance being 2.98 Å. Compared to zero‐dimensional 1 , the extension to one‐dimensional 2 is considered to result from the specific affinity between Ag+ and the ligand 4 ‐ MTPP that is attributed to the strong coordinating tendency of silver for aromatic nitrogen and thioether sulfur atoms.  相似文献   

4.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   

5.
In the title compound, [CuCl2(C11H15N3O2)], the CuII ion is five‐coordinated in a strongly distorted trigonal–bipyramidal arrangement, with the two methyl­oxime N atoms located in the apical positions, and the pyridine N and the Cl atoms located in the basal plane. The two axial Cu—N distances are almost equal (mean 2.098 Å) and are substantially longer than the equatorial Cu—N bond [1.9757 (15) Å]. It is observed that the N(oxime)—M—N(pyridine) bond angle for five‐membered chelate rings of 2,6‐diacetyl­pyridine dioxime complexes is inversely related to the magnitude of the M—N(pyridine) bond. The structure is stabilized by intra‐ and inter­molecular C—H⋯Cl hydrogen bonds which involve the methyl H atoms, except for one of the two acetyl­methyl groups.  相似文献   

6.
Carbon monoxide (CO) has recently been identified as a gaseous signaling molecule that exerts various salutary effects in mammalian pathophysiology. Photoactive metal carbonyl complexes (photoCORMs) are ideal exogenous candidates for more controllable and site‐specific CO delivery compared to gaseous CO. Along this line, our group has been engaged for the past few years in developing group‐7‐based photoCORMs towards the efficient eradication of various malignant cells. Moreover, several such complexes can be tracked within cancerous cells by virtue of their luminescence. The inherent luminecscent nature of some photoCORMs and the change in emission wavelength upon CO release also provide a covenient means to track the entry of the prodrug and, in some cases, both the entry and CO release from the prodrug. In continuation of the research circumscribing the development of trackable photoCORMs and also to graft such molecules covalently to conventional delivery vehicles, we report herein the synthesis and structures of three rhenium carbonyl complexes, namely, fac‐tricarbonyl[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2S)(CO)3](CF3SO3), ( 1 ), fac‐tricarbonyl[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C16H10N2S)(CO)3](CF3SO3), ( 2 ), and fac‐tricarbonyl[1,10‐phenanthroline‐κ2N ,N ′](4‐vinylpyridine‐κN )rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2)(CO)3](CF3SO3), ( 3 ). In all three complexes, the ReI center resides in a distorted octahedral coordination environment. These complexes exhibit CO release upon exposure to low‐power UV light. The apparent CO release rates of the complexes have been measured to assess their comparative CO‐donating capacity. The three complexes are highly luminescent and this in turn provides a convenient way to track the entry of the prodrug molecules within biological targets.  相似文献   

7.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

8.
In the isostructural title complexes, [M(C9H6N3O2)2(H2O)2] [M = CoII, (I), CdII, (II), and CuII, (III); the metal centres reside on a twofold axis in the space group C2/c for (I) and (II)], the metal centres are surrounded by four O atoms from two O,O′‐bidentate carboxyl­ate groups and by two trans‐coordinated aqua ligands, forming a distorted octa­hedral environment. The mol­ecules possess four hydrogen‐bond donor (two aqua ligands) and four hydrogen‐bond acceptor sites (two triazole groups), and aggregate by self‐association, forming two‐dimensional hydrogen‐bonded frameworks [via O—H⋯N inter­actions; O⋯N = 2.749 (3)–2.872 (3) Å]. The layers are parallel and are tightly packed with short inter­layer distances of 4.93, 4.95 and 5.01 Å for (I), (II) and (III), respectively.  相似文献   

9.
A series of new 3‐(arylhydrazono)pentane‐2, 4‐diones ( 1 ‐ 6 ) synthesized from pentane‐2, 4‐dione and diazonium salts of respective anilines using the procedure of Japp‐Klingemann are described. Complexes with CuII and NiII salts are prepared ( 7 ‐ 10 , respectively). Spectroscopic properties of these compounds have been studied and X‐ray crystal structures of selected hydrazones ( 3 , 4 , 6 ) and of the hydrazone complexes ( 7 ‐ 10 ) are reported. The structures of the uncomplexed hydrazones feature an intramolecular N‐H···O interaction to yield a six‐membered H‐bond ring reflecting preference of the hydrazone tautomeric structure. All the complexes are mononuclear 2:1 (L:M) structures of six‐membered chelate type involving N2O2 binding sites that are quadratic arranged but differ in the entire coordination environment dependent on the metal and the ligand substitution including distorted octahedral and quadratic pyramidal coordination geometries in the CuII complexes 7 and 8 or nearly regular square planar coordination geometry in the NiII complexes 9 and 10 , respectively. In the crystal packings, strong and weak H‐bond interactions cause supramolecular network structures.  相似文献   

10.
[MNCl2(PPh3)2] complexes (M = Re, Tc) react with N‐[(dialkylamino)(thiocarbonyl)]‐N′‐(2‐hydroxyphenyl)benzamidines (H2L1) with formation of neutral, five‐coordinate nitrido complexes of the composition [MN(L1)(PPh3)]. The products have distorted square‐pyramidal coordination spheres with each a tridentate, double‐deprotonated benzamidine and a PPh3 ligand in their basal planes.  相似文献   

11.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

12.
The aluminum complexes containing two iminophenolate ligands of the type (p‐XC6H4NCHC6H4O‐o)2AlR' (R′=Me ( 3, 4 ) or R′=O(CH2)4OCH=CH2 ( 5, 6 ), X=H ( 3, 5 ), F( 4, 6 )) were synthesized and characterized by 1H, 13C NMR spectroscopy, and X‐ray crystallography. The reaction of AlMe3 with two equivalents of substituted iminophenols gave five‐coordinated {ONR}2AlMe ( 3, 4 ) complexes. Subsequent reaction of these methyl complexes with unsaturated alcohol, HO(CH2)4OCH=CH2, resulted in target compounds 5 and 6 in a good yield. It was shown that the complexes ( 3 ‐ 6 ) are monomeric in solution (NMR) and in solid state (X‐ray analysis). The catalytic activity of the complexes 5 and 6 towards ring‐opening polymerization (ROP) of ?‐caprolactone and d,l ‐lactide was assessed. Complex 5 showed higher activity as compared with 6 , while both of these catalysts induced controlled homo‐ and copolymerization to afford the macromonomers with high content of vinyl ether end groups (Fn > 80%) in a broad range of molecular weights (Mn = 4000–30,000 g mol?1) with relatively narrow MWD (Mw/Mn = 1.1–1.5). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1237–1250  相似文献   

13.
Several novel substituted bis(2‐pyridylimino)isoindolato (BPI) cobalt(II) and iron(II) complexes [M(BPI)(OAc)(H2O)] (M = Co: 1 ‐ 6, Fe: 7) have been synthesized by reaction of bis(2‐pyridylimino)isoindole derivatives with the corresponding metal(II) acetates. Reaction of 1‐6 with 1.5 ‐ 2 molar equivalents of t‐BuOOH gave the corresponding alkylperoxocobalt(III) complexes [Co(BPI)(OAc)(OOtBu)] (10 ‐ 15). Using an aqueous solution of t‐BuOOH (70 %), cyclohexene was selectively catalytically oxidized to the dialkylperoxide cyclohex‐2‐ene‐1‐t‐butylperoxide.  相似文献   

14.
The thermic decomposition of the cyclotetrametaloxanetetrols [(FcN)4M4O4(OH)4] (M= Si( 1 ), Ge( 2 )) as well as the cyclohexagermoxanediol [(FcN)6Ge6O8(OH)2] ( 3 ) takes place in three defined steps. At the monomer silandiol [(FcN)2Si(OH)2] ( 4 ) only two such steps are observed. The cyclovoltammetric oxidation of the metaloxanes 1 ‐ 2 occurs in two two‐electron steps and following two one‐electron transitions. The oxidation of 3 occurs in a four‐electron process and a following two‐electron transition. Silandiol 4 is oxidized via two one‐electron transitions. The oxidation of the educt [FcNGeCl3] ( 5 ) occurs in a one‐electron step. Temperature depending 57Fe‐Mössbauer‐measurements confirm as well intervalent electron transitions in 1 ‐ 5 as the chelate stucture in 5 .  相似文献   

15.
Six novel organometallic half sandwich complexes [(η5‐C5Me5)M(L1–3)Cl]Cl.2H2O were synthesized using [{(η5‐C5Me5)M(μ‐Cl)Cl2], where M = Ir (III)/Rh (III) and L1–3 = three pyridyl pyrimidine based ligands; and characterized by NMR, Infra‐red spectroscopy, conductance, elemental and thermal analysis. The complex‐DNA binding mode and/or strength evaluated using absorption titration, electrochemical studies and hydrodynamic measurement proposed intercalative binding mode, which was also confirmed by molecular docking study. Differential pulse voltammetry and cyclic voltammetry studies indicated an alteration in oxidation and reduction potentials of complexes (M+4/M+3) in presence of CT‐DNA. The metal complexes can cleave plasmid DNA as proposed in gel electrophoretic analysis. The LC50 values of complexes evaluated on brine shrimp suggested their potent cytotoxic nature.  相似文献   

16.
In the three title complexes, namely (2,2′‐biquinoline‐κ2N,N′)dichloro­palladium(II), [PdCl2(C18H12N2)], (I), and the corresponding copper(II), [CuCl2(C18H12N2)], (II), and zinc(II) complexes, [ZnCl2(C18H12N2)], (III), each metal atom is four‐coordinate and bonded by two N atoms of a 2,2′‐biquinoline molecule and two Cl atoms. The PdII atom has a distorted cis‐square‐planar coordination geometry, whereas the CuII and ZnII atoms both have a distorted tetra­hedral geometry. The dihedral angles between the N—M—N and Cl—M—Cl planes are 14.53 (13), 65.42 (15) and 85.19 (9)° for (I), (II) and (III), respectively. The structure of (II) has twofold imposed symmetry.  相似文献   

17.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

18.
The syntheses of lithium and alkaline earth metal complexes with the bis(borane‐diphenylphosphanyl)amido ligand ( 1 ‐ H ) of molecular formulas [{κ2‐N(PPh2(BH3))2}Li(THF)2] ( 2 ) and [{κ3‐N(PPh2(BH3))2}2M(THF)2] [(M = Ca ( 3 ), Sr ( 4 ), Ba ( 5 )] are reported. The lithium complex 2 was obtained by treatment of bis(borane‐diphenylphosphanyl)amine ( 1 ‐ H ) with lithium bis(trimethylsilyl)amide in a 1:1 molar ratio via the silylamine elimination method. The corresponding homoleptic alkaline earth metal complexes 3 – 5 were prepared by two synthetic routes – first, the treatment of metal bis(trimethylsilyl)amide and protio ligand 1 ‐ H via the elimination of silylamine, and second, through salt metathesis reaction involving respective metal diiodides and lithium salt 2 . The molecular structures of lithium complex 2 and barium complex 5 were established by single‐crystal X‐ray diffraction analysis. In the solid‐state structure of 2 , the lithium ion is ligated by amido nitrogen atoms and hydrogen atoms of the BH3 group in κ2‐coordination of the ligand 1 resulting in a distorted tetrahedral geometry around the lithium ion. However, in complex 5 , κ3‐coordination of the ligand 1 was observed, and the barium ion adopted a distorted octahedral arrangement. The metal complex 5 was tested as catalyst for the ring opening polymerization of ?‐caprolactone. High activity for the barium complex 5 towards ring opening polymerization (ROP) of ?‐caprolactone with a narrow polydispersity index was observed. Additionally, first‐principle calculations to investigate the structure and coordination properties of alkaline earth metal complexes 3 – 5 as a comparative study between the experimental and theoretical findings were described.  相似文献   

19.
Hydrothermal reactions of tridentate rigid 2,4,6‐tris‐(benzimidazolyl‐2‐yl)pyridine (pytbzim) ligand and Zn(II)/Cd(II) salts generate binuclear complexes {[Cd2Cl2(pytbzim)2(H2O)2]·2NO3}n ( 1 ) and two isomorphs {[M2Cl2(pytbzim)2(H2O)2]Cl2·2H2O}n [M=Cd ( 2 ), Zn ( 3 )]. All complexes include [M2Cl2(pytbzim)2(H2O)2] dimers, which are further connected into a three‐dimensional supramolecular networks through ?‐? stacking interaction and hydrogen bonds. The solid state photoluminescent studies reveal good fluorescent properties of the pytbzim ligand and complexes 1 – 2 at room temperature.  相似文献   

20.
The 4‐chloro‐ [C14H11ClN2O2, (I)], 4‐bromo‐ [C14H10BrN2O2, (II)] and 4‐diethylamino‐ [C18H21N3O2, (III)] derivatives of benzylidene‐4‐hydroxybenzohydrazide, all crystallize in the same space group (P21/c), (I) and (II) also being isomorphous. In all three compounds, the conformation about the C=N bond is E. The molecules of (I) and (II) are relatively planar, with dihedral angles between the two benzene rings of 5.75 (12) and 9.81 (17)°, respectively. In (III), however, the same angle is 77.27 (9)°. In the crystal structures of (I) and (II), two‐dimensional slab‐like networks extending in the a and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐tail viaπ–π interactions involving the aromatic rings [centroid–centroid distance = 3.7622 (14) Å in (I) and 3.8021 (19) Å in (II)]. In (III), undulating two‐dimensional networks extending in the b and c directions are formed via N—H...O and O—H...O hydrogen bonds. The molecules stack head‐to‐head viaπ–π interactions involving inversion‐related benzene rings [centroid–centroid distances = 3.6977 (12) and 3.8368 (11) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号