首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Four types of innovative benzophenone (BPh)‐ or aryl azide (ArAz)‐containing photoreactive polycarbazole (polyCbz)‐based microparticles (MPs) were prepared using an oxidative liquid phase polymerization system. Their photochemical reactivity was evaluated by their reaction with highly inert poly(2‐chloro‐paraxylelene) (Parylene C) films. Possible mechanisms for the photochemical reaction of those MPs with Parylene C were discussed. The highly photoreactive BPh was found to react more inside the particle causing internal cross‐linking of MP polyCbz chains, fusion between adjoining particles and deformation of their spherical structure. In contrast, the less reactive but more selective ArAz‐containing MPs were found to react much more with Parylene C. The strong reactivity of such photoreactive MPs toward Parylene C films emphasizes a general method for the functionalization of stable nonfunctional polymeric coatings. This paves the way to simple and solvent‐free functionalization of nonfunctional coatings and materials by light. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A molecular layer‐by‐layer (mLbL) deposition process is demonstrated to synthesize conformal coatings of crosslinked polyamide. This process controls the rapid reaction of trimesoyl chloride and m‐phenylene diamine, unlike interfacial polymerization techniques which produce rough films and poorly defined network structure. Layer‐by‐layer polyamide films appear structurally similar to interfacially polymerized films with a linear film growth rate of ≈0.9 nm per cycle. Films made by mLbL deposition show a 70‐fold decrease in surface roughness as compared to a commercial, interfacially polymerized polyamide. Surface chemistry could be controlled based on which reaction step was performed last, leading to amine or carboxylic acid rich surfaces. With the ability to control chemical structure throughout the crosslinked network, this technique provides new routes to build polyamide films and improve analysis techniques for commercial applications such as reverse osmosis membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
In this article, the synthesis and the functionalization of well‐defined, narrow polydispersity (polydispersity index < 1.2) star polymers via reversible addition‐fragmentation chain transfer polymerization is detailed. In this arm first approach, the initial synthesis of a poly(pentafluorophenyl acrylate) polymer, and subsequent, cross‐linking using bis‐acrylamide to prepare star polymers, has been achieved by reversible addition fragmentation chain transfer polymerization. These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality. This approach has allowed the synthesis of star glycopolymer using a very simple approach. Finally, the core of the stars was modified via thiol‐ene click chemistry reaction using fluorescein‐o‐acrylate and DyLigh 633 Maleimide. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Parylene‐N and parylene‐C are polymers of interest for microelectronic and medical coating applications. Modifications for improved surface properties could make them even more useful in such applications. Parylene‐N and parylene‐C films were exposed to ultraviolet light in the presence of oxygen and analyzed with Rutherford backscattering spectrometry, secondary‐ion mass spectroscopy, X‐ray photoelectron spectroscopy, and infrared spectroscopy. This study shows that such exposure results in the formation of aldehyde and carboxylic acid groups near the surface of the films. At the maximum exposure dose, the concentration of oxygen in both parylene‐N and parylene‐C is about 13% at the film surface, and it decreases exponentially with increasing depth. Further modeling and optimization of this process would allow it to be used to tailor the surface concentration of oxygenated species in parylene for the optimization of adhesion and wettability or for the chemical binding of other moieties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1486–1496, 2003  相似文献   

5.
The volume and depth distributions of open spaces in photoresist films designed for ArF‐excimer laser light exposure were studied with monoenergetic positron beams. We measured the Doppler broadening spectra of the annihilation radiation and lifetime spectra of positrons for acrylate and cyclic olefin‐co‐maleic anhydride (COMA) polymers spin‐coated onto Si wafers with methyl amyl ketone, cyclohexanone, and propylene glycol methyl ether acetate solvents. The volume of open spaces in both prebaked acrylate and COMA films was estimated to be 0.12 nm3. The volume of open spaces in acrylate films decreased up to 20% by postexposure baking, but no large change was observed for COMA films. The decrease in the open volume was attributed to the removal of large molecules (adamantyl) from flexible main chains after the chemically amplified reaction of acrylate. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 341–346, 2004  相似文献   

6.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
This study is concerned with the development of new polymers that could be deposited via cathodic electrocoating methods on metal surfaces. The synthetic strategy is based on the incorporation of cationic functionalities into commercial polymers. Polyalkyl acrylic or methacrylic ester copolymers were reacted with primary or secondary amines and aminoalkanols or their mixtures. Depending on the proportion of the acrylic or methacrylic ester in the starting material and the extent of the chemical modification, the resulting amide functionalized polymers are soluble or dispersible in water and could be used as aqueous dispersions for cathodic electrodepositions. Hindered amine catalysts, such as diazabicyclo[2.2.2]octane, accelerate the chemical transformation leading to higher level of functionalization. Among different amines screened, mixtures of oleylamine and ethanolamine proved to produce the best results. A poly(ethylene‐co‐methyl acrylate‐co‐maleic anhydride) [poly(E‐co‐MA‐co‐MAH)] was aminolyzed in solution with a mixture of 50/50 (mol % ratio) of oleylamine/ethanolamine and used to generate aqueous dispersions via phase inversion from methyl isobutyl ketone solutions. These dispersions exhibit particle sizes in the submicron range and zeta potential values indicating a good stability. They could be electrodeposited to give films of high elasticity according to the nanomechanical tests. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Tensile film stress of parylene deposited on liquid   总被引:1,自引:0,他引:1  
We found that liquid droplets encapsulated by Parylene deposited directly on a liquid surface deformed toward spherical shapes during Parylene deposition. This deformation suggested that the film stress was tensile. We calculated the film stress of such Parylene films by studying the surface mean curvature of the droplet shape and found the film stress measured about 0.7-0.9 MPa tensile. This film stress is of opposite type to that of as-deposited Parylene films deposited on solid substrates, which was compressive. This difference might indicate a profound change of the Parylene polymer due to the use of liquid surface as deposition substrate. The tensile film stress and its effect on the droplet shape also have implications in the fabrication and operation of Parylene microdevices that have encapsulated liquid structures such as microlens or micropumps.  相似文献   

9.
The light‐responsive behavior in solution and in thin films of block copolymers bearing 2‐nitrobenzyl photocleavable esters as side groups is discussed in this article. The polymers were synthesized by grafting 2‐nitrobenzyl moieties onto poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) precursor polymers, leading to poly(2‐nitrobenzyl acrylate‐random‐acrylic acid)‐block‐polystyrene (P(NBA‐r‐AA)‐b‐PS) block copolymers. The UV irradiation of the block copolymers in a selective solvent for PS led to the formation of micelles that were used to trap hydrophilic molecules inside their core (light‐induced encapsulation). In addition, thin films consisting of light‐responsive P(NBA‐r‐AA) cylinders surrounded by a PS matrix were achieved by the self‐assembly of P(NBA‐r‐AA)‐b‐PS copolymers onto silicon substrates. Exposing these films to UV irradiation generates nanostructured materials containing carboxylic acids inside the cylindrical nanodomains. The availability of these chemical functions was demonstrated by reacting them with a functional fluorescent dye. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
We describe in situ neutron reflectivity (NR) and RAIRS studies of the chemical modification of films of a polypyrrole-based conducting polymer derived from the pentafluorophenyl ester of poly(pyrrole-N-propanoic acid) (PFP) electrodeposited on electrode surfaces. We explore the role of the solvent in controlling the rate of reaction with solution-based nucleophiles (amines, which react with the ester to form amides). By varying the identity of the solvent (water vs acetonitrile) and the neutron contrast (deuteration), we find that both the identity of the solvent and its population within the film are paramount in determining chemical reactivity and electroactivity. IR signatures allow monitoring of the reaction of solution-based amine-tagged species such as amino-terminated poly(propylene glycol), ferrocene ethylamine, and lysine with film-based ester functionalities: the carbonyl bands show ester/amide interconversion and some hydrolysis to acid. Time-dependent spectral analysis shows marked variations in reaction rate with (i) (co-)polymer composition (replacement of some fluorinated ester-functionalized pyrrole with unfunctionalized pyrrole), (ii) the solvent to which the polymer film is exposed, and (iii) the rate of polymer deposition. NR data provide solvent profiles as a function of distance perpendicular to the interface, the variations of which provide an explanation for film reactivity patterns. Homopolymer films are relatively hydrophobic, thus hindering reaction with species present in water solutions. Incorporating pyrrole groups raises the solvent population-dramatically for water-thereby facilitating entry and reaction of aqueous-based lysine. Changing film deposition rate yields films with different absolute levels of solvent and reactivity patterns that are dependent on the size of the reactant molecules: more rapid deposition of polymer gives films with a more open structure leading to a higher solvent content and thence increased reactivity. These results, supported by XPS and AFM data, allow assembly of composition-structure-reactivity correlations, in which the controlling feature is film solvation.  相似文献   

11.
The application of surface‐attached, thiol‐ene polymer films for controlling material properties in a gradient fashion across a surface was investigated. Thiol‐ene films were attached to the surface by first depositing a thiol‐terminated self‐assembled monolayer and performing a thiol‐ene photopolymerization reaction on the surface. Property gradients were created either by creating and modifying a gradient in the surface thiol density in the SAM or by changing the polymerization conditions or both. Film thickness was modified across the substrate by changing either the density of the anchoring thiol functional groups or by changing the reaction conditions such as exposure time. Thicker films (1–11 nm) were obtained by polymerizing acrylate polymer brushes from the surface with varying exposure time (0–60 s). The two factors, that is, the surface thiol density and the exposure time, were combined in orthogonal directions to obtain thiol‐ene films with a two‐dimensional thickness gradient with the maximum thickness being 4 nm. Finally, a thiol‐acrylate Michael type addition reaction was used to modify the surface thiol density gradient with the cell‐adhesive ligand, Arg‐Gly‐Asp‐Ser (RGDS), which subsequently yielded a gradient in osteoblast density on the surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7027–7039, 2006  相似文献   

12.
The synthesis of alkyl 2‐(carboethoxyhydroxymethyl)acrylates via the Bayllis‐Hillmann reaction pathway is described. These compounds are found to be poor monomers when involved in free radical polymerizations but present an extremely high reactivity upon Michael addition with primary amines leading to a simple, mild and efficient route to the preparation of new multifunctional heterocycles and polymers with potential applications in biodegradable coatings. Real‐time NMR spectroscopy permitted monitoring the extent of the reaction sequence and determining the conversion profile of reactants and Michael adduct intermediate. Poly(ester amide)s derived from diamine and hexane bis‐2‐(carboethoxyhydroxymethyl)acrylate were synthesized at room temperature by means of a very efficient Michael addition/cyclization polymerization. These polymers display excellent adhesion to metal, glass, and paper substrates and interesting hydrolytic susceptibility. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3182–3192, 2008  相似文献   

13.
The syntheses and photophysical properties of novel luminescent polysilanes modified with dansyl fluorophores on various spacer (PMPSi‐n‐DNS) are reported. The modified polysilanes were prepared by condensation reaction of dansyl amines, such as 5‐(dimethylamino)naphthalene‐1‐sulfonohydrazide or N‐(ω‐aminoalkyl)‐5‐(dimethylamino)naphthalene‐1‐sulfonamides with formylated poly[methyl(phenyl)silanediyl], yielding Schiff bases. The aldehyde groups were incorporated into the parent polymer by a one‐step reaction with dichloromethyl methyl ether in the presence of Lewis acid. Influence of the alkyl chain length (n) on the photophysical properties was investigated using absorption, steady‐state, and time‐resolved photoluminescence (PL) spectroscopy. The excitation energy transfer from the polysilane backbone to dansyl fluorophore was proved. PL decay dynamics revealed the existence of more than one excited species. In solution, the decay curves of PMPSi‐DNS (no spacer) were double exponential, whereas for PMPSi‐n‐DNS (with spacer), and, in thin films, the decays were three‐exponential. Polymer light‐emitting devices (LEDs) were prepared from the blends of modified polysilane with electroluminescent polymer poly[2,5‐dimethoxy‐1,4‐phenylene‐1,2‐ethenylene‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐(1,4‐phenylene‐1,2‐ethenylene)] (M3EH‐PPV). Compared with LED made of neat electroluminescent polymer, a significant performance improvement of blend LEDs was demonstrated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Here, we present the oil/water (O/W) microemulsion polymerization in three‐component microemulsions of n‐butyl acrylate, ethyl acrylate, and methyl acrylate, monomers with similar chemical structures but different water solubilities using the cationic surfactant dodecyl trimethyl ammonium bromide. The effects of monomer water solubility, initiator type and initial monomer concentration on the polymerization kinetics were studied. Reaction rates were high with final conversions between 70 and 98% depending on the monomer and reaction conditions. The final latexes were bluish, with a particle size ranging between 20 and 50 nm and polymer with molar masses in the order of 106 g mol?1. Increasing monomer water solubility resulted in a slower reaction rate, larger particles and a lower number density of particles. A higher reaction rate, larger average particle size and higher particle number density were obtained by increasing the monomer concentration. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
The diffraction efficiency and morphology of the transmission modes of holographic polymer dispersed liquid crystals were studied with respect to the molecular structure of poly(urethane acrylate) (PUA), the film (polymer/liquid crystal) and resin (oligomer/monomer) compositions, and the cell thickness. PUA, based on N‐vinylpyrrolidone and ethyl hexyl acrylate, with low‐molecular‐weight poly(propylene glycol) at a low oligomer content, showed high diffraction efficiency. The results were interpreted in terms of the monomer reactivity and polymer elasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 613–620, 2004  相似文献   

16.
Biobased epoxy resins were synthesized from a catechin molecule, one of the repetitive units in natural flavonoid biopolymers also named condensed tannins. The reactivity of catechin toward epichlorohydrin to form glycidyl ether derivatives was studied using two model compounds, resorcinol and 4‐methylcatechol, which represent the A and B rings of catechin, respectively. These model molecules clearly showed differences in reactivity upon glycidylation, explaining the results found with catechin monomer. The reaction products were characterized by both FTIR and NMR spectroscopy and chemical assay. The glycidyl ether of catechin (GEC) was successfully cured in various epoxy resin formulations. The GECs thermal properties showed that these new synthesized epoxy resins displayed interesting properties compared to the commercial diglycidyl ether of bisphenol A (DGEBA). For instance, when incorporated up to 50% into the DGEBA resin, GEC did not modify the glass‐transition temperature. Epoxy resins formulated with GEC had slightly lower storage moduli but induced a decrease of the swelling percentage, suggesting that GEC‐enhanced crosslinking in the epoxy resin networks. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Thiol‐isocyanate‐acrylate ternary networks were formed by the combination of thiol‐isocyanate coupling, thiol‐acrylate Michael addition, and acrylate homopolymerization. This hybrid polymerization reaction sequence was preferentially controlled by using phosphine catalyst systems in combination with photolysis. The reaction kinetics of the phosphine/acrylate thiol‐isocyanate coupling reactions were systematically investigated by evaluating model, small molecule reactions. The thiol‐isocyanate reaction was completed within 1 min while the thiol‐acrylate Michael addition reaction required ~10 min. Both thiol‐isocyanate coupling and thiol‐acrylate Michael addition reactions involving two‐step anionic processes were found to be both quantitative and efficient. However, the thiol‐isocyanate coupling reaction was much more rapid than the thiol‐acrylate Michael addition, promoting initial selectivity of the thiol‐isocyanate reaction in a medium containing thiol, isocyanate, and acrylate functional groups. Films were prepared from thiol‐isocyanate‐acrylate ternary mixtures using 2‐acryloyloxyethylisocyanate and di‐, tri‐, and tetra‐functional thiols. The sequential thiol‐isocyanate, thiol‐acrylate, and acrylate homopolymerization reactions were monitored by infrared spectroscopy during film formation, whereas thermal and mechanical properties of the films were evaluated as a function of the chemical composition following polymerization. The results indicate that the network structures and material properties are tunable over a wide range of properties (Tg ~ 14–100 °C, FWHM ~ 8–46 °C), while maintaining nearly quantitative reactions, simply by controlling the component compositions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3255–3264, 2010  相似文献   

18.
Coupling between iso(thio)cyanates and amines, alcohols, and thiols to yield (thio)urea/urethane in the gas phase is important for the vacuum deposition processes of functional organic thin films such as molecular layer deposition or chemical vapor deposition. In this study, the kinetics and thermodynamics of 12 reactions between bifunctional reactants containing ? NCO/? NCS and ? NH2/? OH/? SH moieties were calculated using double‐hybrid density functional theory to find systematic structure–reactivity relationships. The activation energy for the proton‐transfer step was correlated with the basicity of the nucleophile/Brønsted acid reactants, while the exothermicity of the coupling reaction depends on whether the other functionality is ? NCO or ? NCS. Analysis of the transition states revealed that the location of the transition state is affected by the basicity of the reactants. Vibrational and electronic spectra of the product were obtained to help future experimental investigations.  相似文献   

19.
We used photodifferential scanning calorimetry to investigate the photocuring kinetics of UV‐initiated free‐radical photopolymerizations of acrylate systems with and without silica nanoparticles. Two kinetics parameters—the rate constant (k) and the order of the initiation reaction (m)—were determined for hybrid organic–inorganic nanocomposite systems containing different amounts of added silica nanoparticles (0–20 wt %) and at different isothermal temperatures (30–100 °C) using an autocatalytic kinetics model. The kinetic analysis revealed that the silica nanoparticles apparently accelerate the cure reaction and cure rate of the UV‐curable acrylate system, most probably due to the synergistic effect of silica nanoparticles during the photopolymerization process. However, a slight decrease in polymerization reactivity that occurred when the silica content increased beyond 15 wt % was attributed to aggregation between silica nanoparticles. We also observed that the addition of silica nanoparticles lowered the activation energy for the UV‐curable acrylate system, and that the collision factor for the system with silica nanoparticles was higher than that obtained for the system without silica nanoparticles, indicating that the reactivity of the former was greater than that of the latter. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 658–670, 2005  相似文献   

20.
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号