首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic series of ortho‐methyl‐ and nitro‐substituted arylhydrazones 2–6 formed by Japp–Klingemann reaction between pentane‐2,4‐dione and the respective aryldiazonium salts have been synthesized and studied by X‐ray crystal structure analysis, with added quantum chemical calculations. The optimized molecular geometries based on DFT calculations, enabling determination of relevant rotational barriers, and the calculated bond and ring critical points, using the method of ‘atoms in molecules’, were found to correspond with the experimental data, involving specific molecular conformations and hydrogen‐bonded ring structure dependent on the ortho‐substitution, thus making possible reliable structural prediction of this compound class. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The kinetics of the reactions of 2,4‐dinitrofluorobenzene (DNFB) and 2,4‐dinitrochlorobenzene (DNClB) with 2‐guanidinobenzimidazole (2‐GB) at 40 ± 0.2 °C in dimethylsulphoxide (DMSO), toluene, and in toluene–DMSO mixtures, and with 1‐(2‐aminoethyl)piperidine (2‐AEPip) and N‐(3‐aminopropyl)morpholine (3‐APMo) in toluene at 25 ± 0.2 °C were studied under pseudo first‐order conditions. For the reactions of 2‐GB carried out in pure DMSO, the second‐order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2‐GB with DNFB in toluene, showed a kinetic behaviour consistent with a base‐catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H‐bonding of 2‐GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO–toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co‐solvent mixed aggregate. For the reactions of 3‐APMo with both substrates in toluene, the second‐order rate coefficients, kA, show a linear dependence on the [amine]. 3‐APMo is able to form a six‐membered ring by an intramolecular H‐bond which prevents the formation of self‐aggregates. In contrast, a third order was observed in the reactions with 2‐AEPip: these results can be interpreted as a H‐bonded homo‐aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the ‘dimer nucleophile’ mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The solvation effects observed in water‐organic solutions were studied by combining data for reaction kinetics and dissolution equilibria by means of a linear free‐energy (similarity) analysis. Kinetic data for the pH‐independent hydrolysis of (4‐methoxyphenyl)‐2,2‐dichloroacetate measured in this work and solubility data for naphthalene, and other substrates of low polarity, in aqueous binary mixtures of methanol, ethanol, acetonitrile, dimethyl sulfoxide (DMSO), and 1,4‐dioxane were used. Linear similarity relationships were discovered for these data over the full range of solvent compositions studied. To gain insight into the similarities observed between these different phenomena, molecular dynamics simulations were carried out for naphthalene and an ester in water–acetonitrile solutions. The results revealed considerable preferential solvation of these substrates by the co‐solvent. Linear relationships between the experimental data and the mole fractions of acetonitrile in the solvation shells of substrates were found. Surprisingly, a linear relationship was found between the mole fractions of acetonitrile in the solvation shells of the ester and naphthalene. This linearity indicated that a similar solvation mechanism governs even such different phenomena as dissolution and reaction kinetics. The relationships between the experimental data and the results of the molecular dynamics calculations found in this work explained the solvent effect observed in water‐organic solutions on the molecular level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The conformational behavior and structural stability of 2‐fluoro‐6‐nitrotoluene (FNT) were investigated by utilizing density functional theory (DFT) with the standard B3LYP/6‐311 + G** method and basis set combinations. The vibrational wavenumbers of FNT were computed at DFT levels and complete vibrational assignments were made on the basis of normal coordinate calculations. Normal coordinate analysis (NCA) has been carried out to support the vibrational analysis. The results were compared with the experimental values. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. The results of vibrational spectra of FNT were also compared with the vibrational spectra of some toluene derivatives. The assignments of bands to various normal modes of the molecules were also carried out. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The mechanisms of the single and double Mannich reactions between acetaldehyde and N‐Boc imines are clarified by density functional theory calculations. For single addition of Mannich reaction, the energy difference between the transition states of different configurations correspond to an enantiomeric excess value of 90.58% (without solvent) and 98.46% (in acetonitrile) in favor of the (S)‐configuration product. For bis‐addition of Mannich reaction, the calculated enantiomeric excess value is 95.02% (without solvent) and 98.57% (in acetonitrile) in favor of the (S, S)‐configuration product. These calculated results are in good agreement with the experimental results. The calculations clearly demonstrate that the hydrogen‐bonding determine the stereochemistry of the reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
1,3‐Dinitrobenzene radical anion (DNB?), which is a typical mixed valence compound, undergoes intramolecular electron transfer (ET) in solution. It is reported that the ET rates exceed 1010 s?1 in polar aprotic solvent such as acetonitrile. Formulation based on a simple one‐dimensional model cannot quantitatively account for the observed ET rates, and further study has been desired for better understanding of the solvent effects on the ET. In the present study, molecular dynamics simulations were performed for DNB? in the vacuum and in acetonitrile solution. In the vacuum, ET was induced by the antisymmetric C–N stretching mode on a timescale of ~100 fs, and the charge transferring between the nitro groups was much less than unity. For the acetonitrile solution, short‐timescale and long‐timescale simulations were performed using a droplet model of solvated DNB? at 298 K. Although the mean C–N distance in the charged nitro group was longer than that in the vacuum, no ET took place in the short (~150 fs) simulations. The solvent coordinate, which was defined as the difference in the solute–solvent interaction energy between the reactant and the product, significantly fluctuated even in short‐time simulations. The reorganization energies in acetonitrile were evaluated on the basis of molecular orbital (MO) calculations, and the ratio of the inner sphere and outer sphere parts, λio, was estimated to be ~0.6. The results suggest that the intramolecular mode and fast solvent mode may play an important role in the present ET reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Aromatic nucleophilic substitution reaction of 1‐fluoro‐2,4‐dinitrobenzene with piperidine was kinetically investigated in ethylene glycol‐choline chloride and glycerol‐choline chloride as 2 deep eutectic solvents (DESs) mixed with dimethyl sulfoxide, in whole mole fractions, at room temperature. The investigation of the reaction in different concentrations of the piperidine shows that the reaction follows the base‐catalyzed mechanism. The measured rate coefficients of the reaction demonstrated a sharp decreasing in all mixtures with the increasing mole fraction of DESs. Linear free energy relationship investigations confirm that hydrogen bond donor ability in addition to polarity‐polarizability of the media has a major effect on the reaction rate. The decrease in the rate coefficient is attributed to not only hydrogen‐bonding donor interactions of the media with piperidine as both reactant and catalyst but also the preferential solvation of reactants by DES compared with the intermediate of the reaction.  相似文献   

8.
Nitroaldol reaction of phenylsulfonylnitromethane with formaldehyde affords a mixture of 2,4‐dinitro‐2,4‐bis(phenylsulfonyl)butan‐1‐ol and 2,4‐dinitro‐2,4‐ bis(phenylsulfonyl)pentane‐1,5‐diol. Treatment of this mixture with base followed by reacidification affords 1,1'‐[(1,3‐dinitro‐1,3‐propanediyl)bis(sulfonyl)]bis(benzene) as a mixture of (R*, R*) and (R*, S*)‐diastereomers from which the (R*, S*)‐diastereomer can be obtained pure. The intermediate in the nitroaldol reaction is (1‐nitroethenyl)sulfonylbenzene and, if dienes are present, additional products are also obtained. If either (E)‐2‐methyl‐1,3‐pentadiene or 1‐(1‐methylethenyl)cyclohexene are present, typical Diels‐Alder adducts are obtained with the major isomers explainable by assuming a transition state in which the nitro group is endo. If furan is present, its formal conjugate addition product, 2‐[2‐nitro‐2‐(phenylsulfonyl)ethyl]furan, is formed. If cyclooctatetraene is present, it first dimerizes and then affords isomeric Diels‐Alder cycloadducts of the dimer. Semiempirical calculations comparing the LUMO energies of (1‐nitroethenyl)sulfonylbenzene to the corresponding trans‐1,2 isomer are presented to explain relative reactivity of 1,1‐ and 1,2‐disubstituted dienophiles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A theoretical study on the regioselectivity of 1,3‐dipolar cycloaddition reaction between an uncommon dipole (thiocarbonyl S‐imide) with cyclopent‐3‐ene‐1,2‐dione (DPh1) and methoxyethene (DPh2) has been carried out by means of several theoretical approaches, namely, activation energy, Houk's rule based on the frontier molecular orbital theory and density functional theory (DFT) reactivity indices. The calculations were performed at the DFT‐B3LYP/6‐31G(d) level of theory using GAUSSIAN 09. The present analysis shows that the 1,3‐dipolar cycloaddition of thiocarbonyl S‐imide with DPh1 and DPh2 has normal‐electron demand and inverse‐electron demand character, respectively. Moreover, the results obtained from energetic point view are in agreement with electronic approaches, and the Houk's rule is capable to predict true regioselectivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Aromatic nucleophilic substitution reaction of 1‐fluoro‐2,4‐dinitrobenzene with para‐substituted and meta‐substituted anilines was kinetically investigated in the mixtures of ethyl acetate and methanol at room temperature. The correlation of second‐order rate coefficients with Hammett's substituent constants yields a fairly linear straight line with negative slope in different mole fractions of ethyl acetate–methanol mixtures. The measured rate coefficients of the reaction demonstrated a dramatic variation in ethyl acetate–methanol mixtures with the increasing mole fraction of ethyl acetate. Linear free energy relationship (LFER) investigations confirm that polarity has a major effect on the reaction rate whereas the hydrogen‐bonding ability of the media has a slight effect on it. Nonlinear free energy relationship based on preferential solvation hypothesis showed differences between the microsphere solvation of the solute and the bulk composition of the solvents, and non‐ideal behavior is observed in the trend of the rate coefficients, which cover the LFER results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The mechanism of chlorination of ammonia and aliphatic amines by Cl2 was studied by quantum‐chemical calculations using a series of DFT functionals. Three different reaction pathways were considered for the reaction between Cl2 and NH3 in the gas phase. Several intermediates and transition state structures, not described earlier, were located on the corresponding potential energy surface. It is calculated that the reaction field effects (SCIPCM) on the chlorination is much less pronounced than the effect of a specific solvent interaction which was modeled by an explicit water molecule. It is also found that the calculated energy barrier and the reaction free energy of the chlorination of different amines are dependent on the alkyl‐substituent effects. With increase in the basicity of amine, the chlorination reaction becomes more feasible. Calculated geometries of intermediates and overall reaction energetics are significantly influenced by the method for a treatment of electron correlation (DFT vs. MP2), and by the fraction of HF exchange (χ) in DFT functionals. With increase in the χ in the corresponding functional, the DFT results approach those obtained at the MP2 level, and are closer to experimental values, as well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Polarized Fourier transform‐infrared (FT‐IR) reflectance spectra and powder Raman spectra have been measured for 1,3‐dinitrobenzene crystal in order to revise the assignments of bands by means of the oriented gas model reinforced with quantum chemical [density functional theory (DFT)] calculations. Longitudinal optical/transverse optical (LO‐TO) splitting of some bands is observed indicating medium strong, long‐range, dipole–dipole interactions. The analysis of overtones in the polarized FT‐NIR spectra has allowed us to estimate the anharmonicity of vibrations in the crystal. The molecular motions of the nitro groups are analyzed on the basis of temperature‐dependent polycrystalline IR spectra. Based on the values of the energy difference (Δνel) between the forbidden A1g→B2u transition in the benzene molecule in the gas phase and the first electronic transition in 1,3‐dinitrobenzene, it has been concluded that the intermolecular interactions are medium strong. The nitro group interactions are proposed to play the main role in the optical nonlinearity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The kinetics and activation parameters for the reaction between 2‐amino‐benzamide and some benzaldehyde derivatives in the presence of formic acid have been reported and discussed. A linear plot of lnk vs l/T showed that the reactions obey the Arrhenius equation. Both the Arrhenius and the Eyring equations were used to calculate the activation energy. The effect of nitro groups was studied on different positions of benzaldehyde. For all substituents, the reactions followed second‐order kinetics, and the partial orders of reactions were recognized with respect to each reactant. Comparisons between the magnitudes of ΔH? and TΔS?showed that the reactions were enthalpy controlled. The validity of the isokinetic relationship and the compensation effect was tested, and the isokinetic temperature (β) was obtained. A linear enthalpy‐entropy plot (ΔH?versusΔS?) showed that the compensation effect is established, and this process occurs via a same mechanism across a series of reactions. From the Van't Hoff and Exner's plots, the isokinetic temperature was obtained.  相似文献   

15.
The nature and extent of preferential solvation in SNAr reaction between 1‐fluoro‐2,4‐dinitrobenzene and morpholine are observed to depend upon the concentration of amine. Positive deviation from ideality is observed during kinetic studies of reactions carried out with lower concentration of the amine, while reaction rates measured for systems containing higher concentration of the amine show negative deviation from ideal behavior. The anomaly originates from the competition between rate‐limiting proton transfer and fluoride abstraction step in the SNAr mechanism. The observations have been explained on the basis of the generally accepted mechanism and by calculation of preferential solvation parameters.  相似文献   

16.
采用密度泛函UB3LYP/6–311+G(2d)方法计算研究了Fe+在基态和激发态与CO与N2O反应的反应机理。全参数优化了反应势能面上各驻点的几何构型,用频率分析方法和内禀反应坐标(IRC)方法对过渡态进行了验证,并用UB3LYP/6–311++G(3df,3pd)、单点垂直激发等方法分别进行各驻点单点能校正,四重态和六重态反应势能面交叉点CP确定,计算结果表明,该反应为两步反应,且反应机理都为插入—消去反应,势能面上的两个交叉点能够有效的降低反应的活化能,这在动力学和热力学上都是有利的。  相似文献   

17.
The rate-determining proton transfer step in the amine reduction reaction catalysed by the enzyme methylamine dehydrogenase has been studied using a hybrid quantum mechanical/molecular mechanical (QM/MM) model. Variational transition state theory, combined with multidimensional tunnelling corrections, has been employed to calculate reaction rate constants, and hence deuterium kinetic isotope effects (KIE). To render these calculations computationally feasible, the electronic structure was described using a PM3 method with specific reaction parameters obtained by a fit to energetics obtained at a high level for a small model system. Compared to the use of standard parameters, these revised parameters result in a considerable improvement in the predicted KIE values and activation energy. For both methylamine and ethanolamine substrates, through-barrier, rather than over-barrier, motion is found to dominate with KIE values that are large and close to the experimental values. A major difference between the two substrates is that, for ethanolamine, different hydrogen bonding structures involving the substrate hydroxyl are possible, leading to very different potential energy surfaces with KIE values covering a considerable range. We speculate that this is the origin of the differing temperature behaviour observed for the KIEs of the two substrates.  相似文献   

18.
DFT (B3PW91) and CASSCF calculations have been carried out to study the relative α migratory abilities of H and F in alkyl transition metal complexes. It is shown that the activation energy is considerably lower to migrate H than F, whereas the energies of reaction are similar for the two reactions. A study of the electron configurations and the orbitals describing these configurations shows that the high activation energy for F is due to a 4-electron repulsion between an F lone pair and the occupied Ru=C π orbital.  相似文献   

19.
The purpose of this work was to analyze the microscopic feature of binary solvent systems formed by a molecular solvent (acetonitrile or dimethylformamide or methanol) and an ionic liquid (IL) cosolvent [1‐(1‐butyl)‐3‐methylimidazolium tetrafluoroborate or 1‐(1‐butyl)‐3‐methylimidazolium hexafluorophosphate]. The empirical solvatochromic solvent parameters ET(30), π*, α, and β were determined from the solvatochromic shifts of adequate indicators. The behavior of the solvent systems was analyzed according to their deviation from ideality. The study focused on the identification of solvent mixtures with relevant solvating properties in order to select mixed solvents with particular characteristics. The comparison of the molecular–microscopic solvent parameters corresponding to the selected binary mixtures with both ILs considered at similar mixed‐solvent composition revealed that the difference is centered on the basic character of them. A kinetic study of a nucleophilic aromatic substitution reaction between 1‐fluoro‐2,4‐dinitrobenzene (FDNB) and 1‐butylamine (BU) developed in (acetonitrile or dimethylformamide + IL) solvent mixtures is presented in order to investigate and compare the solvent effects on a chemical process. For the explored reactive systems the solvation behavior is dominated by both the dipolarity/polarizability and the basicity of the media, contributing these solvent properties to accelerating the chemical process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A Molecular Electron Density Theory study of the zw‐type 32CA reactions of acetonitrile oxide (NO) with two 7‐oxanorborn‐5‐en‐2‐ones (ONBs) has been performed at the DFT B3LYP/6‐31G(d) computational level. These cycloadditions proceed through one‐step mechanisms with high activation energies and present low para regio and complete syn diastereofacial selectivities. While the non‐polar character of these zw‐type 32CA reactions, which is the consequence of the insufficient electrophilic activation of ONBs, according to the analysis of the conceptual DFT reactivity indices, accounts for the high activation energies, and low para regioselectivity, NCI topological analyses at the anti/syn pairs of para TSs reveal that the steric hindrance encountered between the NO framework and the ONB side containing the carbonyl group along the anti approach mode is responsible for the complete syn diastereofacial selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号