首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate constants and modes of reaction of NO2+ and C2H5ONO2NO2+ with aromatic compounds and alkanes have been determined in a pulsed ion cyclotron resonance mass spectrometer. Both ions undergo competing charge transfer and substitution reactions (NO2+ + M → MO+ + NO; C2H5ONO2NO2+ + M → MNO2+ + C2H5ONO2) with aromatic molecules. In both cases, the probability that a collision results in charge transfer increases with increasing exothermicity of that process. The C2H5ONO2NO2+ ion does not undergo charge transfer with molecules having an ionization potential greater than about 212 kcal/mol (9.2 eV); this observation leads to an estimate of 13 kcal/mol for the binding energy between NO2+ and C2H5ONO2. The importance of the substitution reaction depends on the number of substituents on the aromatic ring and the molecular structure, and, in the case of C2H5ONO2NO2+ ions, on the energetics of the competing charge transfer process. Both NO2+ and C2H5ONO2NO2+ undergo hydride transfer reactions with alkanes. For both these ions, k(hydride transfer)/k (collision) increases with increasing exothermicity of reaction, but in both cases the rate constants of reaction are unusually low when compared with other hydride transfer reactions of comparable exothermicity which have been reported in the literature. This is interpreted as evidence that the attack on the alkane preferentially involves the nitrogen atom (where the charge is localized) rather than one of the oxygen atoms of NO2+.  相似文献   

2.
This work analyzed the thermal decomposition of ammonium nitrate (AN) in the liquid phase, using computations based on quantum mechanics to confirm the identity of the products observed in past experimental studies. During these ab initio calculations, the CBS‐QB3//ωB97XD/6–311++G(d,p) method was employed. It was found that one of the most reasonable reaction pathways is HNO3 + NH4+ → NH3NO2+ + H2O followed by NH3NO2+ + NO3 → NH2NO2 + HNO3. In the case in which HNO3 accumulates in the molten AN, alternate reactions producing NH2NO2 are HNO3 + HNO3 → N2O5 + H2O and subsequently N2O5 + NH4+ → NH2NO2 + H2O. In both scenarios, HNO3 plays the role of a catalyst and the overall reaction can be written as NH4+ + NO3 (AN) → NH2NO2 + H2O. Although the unimolecular decomposition of NH2NO2 is thermodynamically unfavorable, water and bases both promote the decomposition of this molecule to N2O and H2O. Thus AN thermal decomposition in the liquid phase can be summarized as NH4+ + NO3 (AN) → N2O + 2H2O.  相似文献   

3.
采用QCISD和MP2两种计算方法,在6-31++G(d,p)的基组下,对气相中呋喃负离子与N2O反应的微观机理进行了较为系统的计算研究。结果表明,通道1中的路径1和2为此反应体系的主反应路径,其各反应驻点的能量均低于反应物的,并且互为竞争路径。主要产物为C4H3NO- 和NO,同时也应能检测到少量的C4H3O2- 和N2。理论计算结果与实验预测基本一致。此外,对于次要路径也做了简要说明,并且此反应体系的所有反应路径均为强放热过程。  相似文献   

4.
Carbon‐atom extrusion from the ipso‐position of a halobenzene ring (C6H5X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2]+; also, the third‐row transition‐metal complexes [MCH2]+, M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2, OCH3, and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2]+. In the thermal gas‐phase processes of atomic Ln+ with C7H7Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4fn5d16s1 configuration are reactive and form both [LnCl]+ and [LnC5H5Cl]+. Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond‐dissociation energies of the C?X or M+?X bonds or the promotion energies of lanthanides.  相似文献   

5.
New salt forms of the antioxidant drug emoxypine (EMX, 2‐ethyl‐6‐methylpyridin‐3‐ol) with pharmaceutically acceptable maleic (Mlt), malonic (Mln) and adipic (Adp) acids were obtained {emoxypinium maleate, C8H12NO+·C4H3O4, [EMX+Mlt], emoxypinium malonate, C8H12NO+·C3H3O4, [EMX+Mln], and emoxypinium adipate, C8H12NO+·C6H9O4, [EMX+Adp]} and their crystal structures determined. The molecular packing in the three EMX salts was studied by means of solid‐state density functional theory (DFT), followed by QTAIMC (quantum theory of atoms in molecules and crystals) analysis. It was found that the major contribution to the packing energy comes from pyridine–carboxylate and hydroxy–carboxylate heterosynthons forming infinite one‐dimensional ribbons, with [EMX+Adp] additionally stabilized by hydrogen‐bonded C(9) chains of Adp ions. The melting processes of the [EMX+Mlt] (1:1), [EMX+Mln] (1:1) and [EMX+Adp] (1:1) salts were studied and the fusion enthalpy was found to increase with the increase of the calculated lattice energy. The dissolution process of the EMX salts in buffer (pH 7.4) was also studied. It was found that the formation of binary crystals of EMX with dicarboxylic acids increases the EMX solubility by more than 30 times compared to its pure form.  相似文献   

6.
A global potential energy surface (PES) corresponding to the ground state of AuH2 system has been constructed based on 22 853 ab initio energies calculated by the multireference configuration interaction method with a Davidson correction. The neural network method is used to fit the PES, and the root mean square error is only 1.87 meV. The topographical features of the novel global PES are compared with previous PES which is constructed by Zanchet et al. (Zanchet PES). The global minimum energy reaction paths on the two PESs both have a well and a barrier. Relative to the Au + H2 reactants, the energy of well is 0.316 eV on the new PES, which is 0.421 eV deeper than Zanchet PES. The calculation of Au(2S) + H2(X1Σg+) → AuH(X1Σ+) + H(2S) dynamical reaction is carried out on new PES, by the time‐dependent quantum wave packet method (TDWP) with second order split operator. The reaction probabilities, integral cross‐sections (ICSs) and differential cross‐sections are obtained from the dynamics calculation. The threshold in the reaction is about 1.46 eV, which is 0.07 eV smaller than Zanchet PES due to the different endothermic energies on the two PESs. At low collision energy (<2.3 eV), the total ICS is larger than the result obtained on Zanchet PES, which can be attributed to the difference of the wells and endothermic energies.  相似文献   

7.
The oxidation of some aliphatic alcohols by quinolinium fluorochromate (QFC) in dimethyl sulfoxide leads to the formation of corresponding carbonyl compounds. The reaction is first order with respect to QFC. The reaction exhibited Michaelis‐Menten type kinetics with respect to the alcohol. The reaction is catalyzed by hydrogen ions. The hydrogen‐ion dependence has the form: kobs=a + b[H+]. The oxidation of [1,1‐2H2]ethanol (MeCD2OH) exhibits a substantial primary kinetic isotope effect. The reaction has been studied in nineteen different organic solvents. The solvent effect was analyzed using Taft's and Swain's multiparametric equations. The rate of disproportionation of the complex is susceptible to both polar and steric effects of the substituents. A suitable mechanism has been proposed. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 469–475, 1999  相似文献   

8.
The isomers 4‐methylethcathinone and N‐ethylbuphedrone are substitutes for the recently banned drug mephedrone. We find that with conventional proton transfer reaction mass spectrometry (PTR‐MS), it is not possible to distinguish between these two isomers, because essentially for both substances, only the protonated molecules are observed at a mass‐to‐charge ratio of 192 (C12H18NO+). However, when utilising an advanced PTR‐MS instrument that allows us to switch the reagent ions (selective reagent ionisation) from H3O+ (which is commonly used in PTR‐MS) to NO+, O2+ and Kr+, characteristic product (fragment) ions are detected: C4H10N+ (72 Da) for 4‐methylethcathinone and C5H12N+ (86 Da) for N‐ethylbuphedrone; thus, selective reagent ionisation MS proves to be a powerful tool for fast detection and identification of these compounds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Exact quantum mechanical results for collinear He + H+2 → H + HeH+ reactive collisions are presented for the (total) energy range of 0.93 cV to 1.4 eV. The H+2 initial vibrational states include ν = 0 through ν = 5. The diatomics-in-molecules semi-empirical surface of Kuntz is used in the computations. Except for a short range of energies, the calculated reaction probabilities of H+2 (ν = 0) are larger than those of excited H+2.  相似文献   

10.
Preparation und Characterization of Phthalocyanine-π-Cation-Radicals of H+, Mg2+, and Cu2+ The preparation of phthalocyanine-π-cation-radicals (Pc(?1)) of H+, Mg2+, Cu2+ is described. MgClPc(?1) and Cu(NO3)Pc(?1) · HNO3 are isolated as stoichiometrically pure, stable redbrown solids. Contrary to the phthalocyanines(?2) (Pc(?2)) these are very soluble with redviolet colour in organic solvents in the presence of R? COOH (R ? H, CF3, CCl3). The electronic absorption absorption spectra (UV-VIS) are remarkably solvent-dependent. This solvent effect is due to a reversible radical association. Monomeric radical species exist in nonpolar (CH2Cl2), dimeric in polar solvents (CH3NO2, C2H5OH). The UV-VIS, infrared (IR), and resonance-raman (RR) spectra of MgClPc(?1) and Cu(NO3)Pc(?1) · HNO3 are discussed and compared with the analogoues spectra of MgPc(?2) · 2 H2O and MgPc(?2) · HCl. Although there are only minor differences in the chemical composition and the electronic structure the spectroscopic data vary significantly for every complex. Especially the IR spectrum is suitable for a quick demonstration of the π-cation-radicals. The diagnostic bands are at ca. 1350 and 1450 cm?1.  相似文献   

11.
Solvent‐free (2S)‐methyl 2‐ammonio‐3‐(4‐hydroxy­phenyl)­propionate chloride, C10H14NO3+·Cl, (I), and its methanol solvate, C10H14NO3+·Cl·CH3OH, (II), are obtained from different solvents: crystallization from ethanol or propan‐2‐ol gives the same solvent‐free crystals of (I) in both cases, while crystals of (II) were obtained by crystallization from methanol. The structure of (I) is characterized by the presence of two‐dimensional layers linked together by N—H⋯Cl and O—H⋯Cl hydrogen bonds and also by C—H⋯O contacts. Incorporation of the methanol solvent mol­ecule in (II) introduces additional O—H⋯O hydrogen bonds linking the two‐dimensional layers, resulting in the formation of a three‐dimensional network.  相似文献   

12.
Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO’s enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N2O3) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO2. Although N2O3 formation might be readily explained by the reaction Hb‐Fe3++NO2?+NO?Hb‐Fe2++N2O3, the exact manner in which methemoglobin (Hb‐Fe3+), nitrite and NO interact with one another is unclear. Both an “Hb‐Fe3+‐NO2?+NO” pathway and an “Hb‐Fe3+‐NO+NO2?” pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N2O3 formation, the so‐called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the “Hb‐Fe3+‐NO2?+NO” pathway proved complex. Not only are multiple linkage‐isomeric (N‐ and O‐coordinated) structures conceivable for methemoglobin–nitrite, multiple isomeric forms are also possible for N2O3 (the lowest‐energy state has an N? N‐bonded nitronitrosyl structure, O2N? NO). We considered multiple spin states of methemoglobin–nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe3+ and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both MS=0 and MS=1. For a six‐coordinate Fe3+O‐nitrito starting geometry, which is plausible for methemoglobin–nitrite, we found that N2O3 formation entails barriers of about 17–20 kcal mol?1, which is reasonable for a physiologically relevant reaction. For the “Hb‐Fe3+‐NO+NO2?” pathway, which was also found to be energetically reasonable, our calculations indicate a two‐step mechanism. The first step involves transfer of an electron from NO2? to the Fe3+–heme–NO center ({FeNO}6) , resulting in formation of nitrogen dioxide and an Fe2+–heme–NO center ({FeNO}7). Subsequent formation of N2O3 entails a barrier of only 8.1 kcal mol?1. From an energetics point of view, the nitrite anhydrase reaction thus is a reasonable proposition. Although it is tempting to interpret our results as favoring the “{FeNO}6+NO2?” pathway over the “Fe3+‐nitrite+NO” pathway, both pathways should be considered energetically reasonable for a biological reaction and it seems inadvisable to favor a unique reaction channel based solely on quantum chemical modeling.  相似文献   

13.
The kinetics and mechanism for the reaction of NH2 with HONO have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of this reaction has been computed by single‐point calculations at the CCSD(T)/6‐311+G(3df, 2p) level based on geometries optimized at the CCSD/6‐311++G(d, p) level. The reaction producing the primary products, NH3 + NO2, takes place via precomplexes, H2N???c‐HONO or H2N???t‐HONO with binding energies, 5.0 or 5.9 kcal/mol, respectively. The rate constants for the major reaction channels in the temperature range of 300–3000 K are predicted by variational transition state theory or Rice–Ramsperger–Kassel–Marcus theory depending on the mechanism involved. The total rate constant can be represented by ktotal = 1.69 × 10?20 × T2.34 exp(1612/T) cm3 molecule?1 s?1 at T = 300–650 K and 8.04 × 10?22 × T3.36 exp(2303/T) cm3 molecule?1 s?1 at T = 650–3000 K. The branching ratios of the major channels are predicted: k1 + k3 producing NH3 + NO2 accounts for 1.00–0.98 in the temperature range 300–3000 K and k2 producing OH + H2NNO accounts for 0.02 at T > 2500 K. The predicted rate constant for the reverse reaction, NH3 + NO2 → NH2 + HONO represented by 8.00 × 10?26 × T4.25 exp(?11,560/T) cm3 molecule?1 s?1, is in good agreement with the experimental data. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 678–688, 2009  相似文献   

14.
The study of ion chemistry involving the NO2+ is currently the focus of considerable fundamental interest and is relevant in diverse fields ranging from mechanistic organic chemistry to atmospheric chemistry. A very intense source of NO2+ was generated by injecting the products from the dielectric barrier discharge of a nitrogen and oxygen mixture upstream into the drift tube of a proton transfer reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) apparatus with H3O+ as the reagent ion. The NO2+ intensity is controllable and related to the dielectric barrier discharge operation conditions and ratio of oxygen to nitrogen. The purity of NO2+ can reach more than 99% after optimization. Using NO2+ as the chemical reagent ion, the gas‐phase reactions of NO2+ with 11 aromatic compounds were studied by PTR‐TOF‐MS. The reaction rate coefficients for these reactions were measured, and the product ions and their formation mechanisms were analyzed. All the samples reacted with NO2+ rapidly with reaction rate coefficients being close to the corresponding capture ones. In addition to electron transfer producing [M]+, oxygen ion transfer forming [MO]+, and 3‐body association forming [M·NO2]+, a new product ion [M−C]+ was also formed owing to the loss of C═O from [MO]+.This work not only developed a new chemical reagent ion NO2+ based on PTR‐MS but also provided significant interesting fundamental data on reactions involving aromatic compounds, which will probably broaden the applications of PTR‐MS to measure these compounds in the atmosphere in real time.  相似文献   

15.
In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time‐of‐flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6H9+, C6H7+, C5H7+, C5H5+, C4H6+, C4H5+, C3H5+ and C3H3+ were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X‐D/6‐31+g(d,p) level. The coupled cluster method, CCSD(T)/cc‐pVTZ, was employed to calculate the corresponding energies with the zero‐point energy corrections by the ωB97X‐D/6‐31+g(d,p) approach. Combining experimental and theoretical results, possible formation pathways of the fragment ions were proposed and discussed in detail. The retro‐Cope rearrangement was found to play a crucial role in the formation of C4H6+, C4H5+ and C3H5+. Intramolecular hydrogen migrations were observed as dominant processes in most of the fragmentation pathways of cyclohexene. The present research provides a clear picture of the photoionization and dissociation processes of cyclohexene in the 8‐ to 15.5‐eV photon energy region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The reaction of N-nitro-O-(4-nitrophenyl)hydroxylamine (1) with conc. H2SO4 affords 4-nitropyrocatechol and that with conc. sulfonic acids (RSO3H where R = Me, CF3) affords 2-hydroxy-5-nitrophenyl-R-sulfonates in yields of 80?C85%. These reactions are assumed to proceed through an intermediate (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+, which eliminates the N2O molecule to form the aryloxenium ion [NO2C6H4O]+. The latter reacts with acid anions at the ortho-carbon atom of the phenyl ring. The thermodynamical parameters of the elementary reactions resulting in the formation of the (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+ and aryloxenium ion [NO2C6H4O]+ were calculated in the B3LYP/6?311+G(d) study of the combined molecular system (nitrohydroxylamine 1 + [H3SO4]+). The reaction of nitrohydroxylamine 1 with aqueous solutions of strong acids (??70% H2SO4, CF3SO3H) affords mainly 4-nitrophenol. It appears that the mechanism of this reaction does not involve the formation of the aryloxenium ion.  相似文献   

17.
Quantum chemical calculations using density functional theory with the TPSS+D3(BJ) and M06‐2X+D3(ABC) functionals have been carried out to understand the mechanisms of catalyst‐free hydrogermylation/hydrostannylation reactions between the two‐coordinate hydrido‐tetrylenes :E(H)(L+) (E=Ge or Sn, L+=N(Ar+)(SiiPr3); Ar+=C6H2{C(H)Ph2}2iPr‐2,6,4) and a range of unactivated terminal (C2H3R, R=H, Ph, or tBu) and cyclic [(CH)2(CH2)2(CH2)n, n=1, 2, or 4] alkenes. The calculations suggest that the addition reactions of the germylenes and stannylenes to the cyclic and acyclic alkenes occur as one‐step processes through formal [2+2] addition of the E?H fragment across the C?C π bond. The reactions have moderate barriers and are weakly exergonic. The steric bulk of the tetrylene amido groups has little influence on the activation barriers and on the reaction energies of the anti‐Markovnikov pathway, but the Markovnikov addition is clearly disfavored by the size of the substituents. The addition of the tetrylenes to the cyclic alkenes is less exergonic than the addition to the terminal alkenes, which agrees with the experimentally observed reversibility of the former reactions. The hydrogermylation reactions have lower activation energies and are more exergonic than the stannylene addition. An energy decomposition analysis of the transition state for the hydrogermylation of cyclohexene shows that the reaction takes place with simultaneous formation of the Ge?C and (Ge)H?C′ bonds. The dominant orbitals of the germylene are the σ‐type lone pair MO of Ge, which serves as a donor orbital, and the vacant p(π) MO of Ge, which acts as acceptor orbital for the π* and π MOs of the olefin. Inspection of the transition states of some selected reactions suggests that the differences between the activation energies come from a delicate balance between the deformation energies of the interacting species and their interaction energies.  相似文献   

18.
Vacuum ultraviolet (VUV) dissociative photoionization of isoprene in the energy region 8.5–18 eV was investigated with photoionization mass spectroscopy (PIMS) using synchrotron radiation (SR). The ionization energy (IE) of isoprene as well as the appearance energies (AEs) of its fragment ions C5H7+, C5H5+, C4H5+, C3H6+, C3H5+, C3H4+, C3H3+ and C2H3+ were determined with photoionization efficiency (PIE) curves. The dissociation energies of some possible dissociation channels to produce those fragment ions were also determined experimentally. The total energies of C5H8 and its main fragments were calculated using the Gaussian 03 program and the Gaussian‐2 method. The IE of C5H8, the AEs for its fragment ions, and the dissociation energies to produce them were predicted using the high‐accuracy energy model. According to our results, the experimental dissociation energies were in reasonable agreement with the calculated values of the proposed photodissociation channels of C5H8. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
We present an effective procedure to differentiate instrumental artefacts, such as parasitic ions, memory effects, and real trace impurities contained in inert gases. Three different proton transfer reaction mass spectrometers were used in order to identify instrument‐specific parasitic ions. The methodology reveals new nitrogen‐ and metal‐containing ions that up to date have not been reported. The parasitic ion signal was dominated by [N2]H+ and [NH3]H+ rather than by the common ions NO+ and O2+. Under dry conditions in a proton transfer reaction quadrupole interface time‐of‐flight mass spectrometer (PTR‐QiTOF), the ion abundances of [N2]H+ were elevated compared with the signals in the presence of humidity. In contrast, the [NH3]H+ ion did not show a clear humidity dependency. On the other hand, two PTR‐TOF1000 instruments showed no significant contribution of the [N2]H+ ion, which supports the idea of [N2]H+ formation in the quadrupole interface of the PTR‐QiTOF. Many new nitrogen‐containing ions were identified, and three different reaction sequences showing a similar reaction mechanism were established. Additionally, several metal‐containing ions, their oxides, and hydroxides were formed in the three PTR instruments. However, their relative ion abundancies were below 0.03% in all cases. Within the series of metal‐containing ions, the highest contribution under dry conditions was assigned to the [Fe(OH)2]H+ ion. Only in one PTR‐TOF1000 the Fe+ ion appeared as dominant species compared with the [Fe(OH)2]H+ ion. The present analysis and the resulting database can be used as a tool for the elucidation of artefacts in mass spectra and, especially in cases, where dilution with inert gases play a significant role, preventing misinterpretations.  相似文献   

20.
The mixed resins, Dowex MR‐3 and MR‐12, in the H+/Cl form, and the cation resin, Dowex‐50W, in the H+ form, were used as a support for some metal chromate and phosphate salts. Similarly, anionic resin, Amberlite IRA‐400, in the Cl form, was used as a support for some metal chromate salts. The activity of these metal salt‐supported on four different resins toward hydrogen peroxide decomposition was investigated. The decomposition of H2O2, with these catalysts, was found to follow first‐order kinetics with respect to [H2O2]. Factors that affected the rate of reaction, such as mesh size of the support, amount of supported salt, and the electrostatic interactions, were investigated. With Ag(I)‐chromate supported on mixed resin MR‐3 in the Ag+/NO3 form, the rate of reaction was greater than that with the mixed resin MR‐12 in the same form. Moreover, the rate with Ag(I) chromate supported on the anion resin IRA‐400 in the R‐NO3 form was greater than mixed resins. Also, the rate with Fe(III) chromate supported on Amberlite IRA‐400 in the R‐CrO42− form was greater than other counter‐anionic forms as well as Dowex‐50W resin in the metal ion form. However, Fe(III)‐chromate supported on cation resin R‐Fe3+ showed greater activity than other cationic forms. On the other hand, the rate with MR‐3 resin in the Na+/PO43− form was greater than that in the presence of supported Fe(III) phosphate. However, the rate of reaction increased when Fe(III) was replaced by Ba(II). Iron(III) phosphate supported on Dowex‐50W resin in the Na+ form showed greater activity compared to MR‐3 resin in the Na+/PO43− form. In the case of Fe(III) phosphate supported on mixed resin MR‐12, the rate was much greater than that with unsupported resin. However, when Ba(II) phosphate was incorporated instead of Fe(III) phosphate, the rate of reaction increased considerably. The activity of Fe(III) chromate is greater than that of Fe(III) phosphate supported on the same cation resin. Activation parameters were evaluated and a probable reaction mechanism was proposed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 667–675, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号