首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Single electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate (MA) in methanol, catalyzed with nonactivated and activated Cu(0) wires, was performed in the presence of nondeoxygenated reagents and was investigated under a simple blanket of nitrogen. The addition of a small amount of hydrazine hydrate mediates the deoxygenation of the reaction mixture by the consumption of oxygen through its use to oxidize Cu(0) to Cu2O, followed by the reduction of Cu2O with hydrazine back to the active Cu(0) catalyst. SET‐LRP of MA in methanol in the presence of air requires a smaller dimension of Cu(0) wire, compared to the nonactivated Cu(0) wire counterpart. Activation of Cu(0) wire allowed the polymerization in air to proceed with no induction period, linear first‐order kinetics, linear correlation between the molecular weight evolution with conversion, and narrow molecular weight distribution. The retention of chain‐end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared by SET‐LRP was demonstrated by a combination of experiments including 1H NMR spectroscopy and matrix‐assisted laser desorption ionization–time of flight mass spectrometry after thioetherification of α,ω‐di(bromo) PMA with thiophenol. In SET‐LRP of MA in the presence of limited air, bimolecular termination is observed only above 85% conversion. However, for bifunctional initiators, the small amount of bimolecular termination observed at high conversion maintains a perfectly bifunctional polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Here we reported the acid dissolution of copper oxides as a methodology for the activation of Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP). In this method, the oxide layer on the surface of commercial Cu(0) wire was removed by dissolution in a concentrated acid such as nitric acid, glacial acetic acid and hydrochloric acid. SET‐LRP of methyl acrylate catalyzed with Cu(0) wire activated with acids showed comparable k value to that of the nonactivated Cu(0) wire‐catalyzed counterpart. However, the polymerizations catalyzed with activated Cu(0) wire proceeded with no initial induction period, predictable molecular weight evolution with conversion, and narrow molecular weight distribution. Regardless of the activation method, the chain end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared from SET‐LRP initiated with a bifunctional initiator is extremely high, maintaining a 100% chain end functionality at ~90% monomer conversion. The degree of bimolecular termination increased as the polymerization exceeds 92% conversion. However, for binfunctional initiators this small amount of bimolecular termination at high conversion maintains a perfectly bifunctional polymer. Structural analysis by MALDI‐TOF upon thioetherification of α,ω‐di(bromo) PMA with thiophenol and 4‐fluorothiophenol confirmed the high fidelity of bromide chain ends. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Cu(0) was prepared via disproportionation of Cu(I)Br in the presence of Me6‐TREN in various solvents in a glove box. The resulting nanopowders were used as mimics of “nascent” Cu(0) catalyst in the single‐electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA), providing faster polymerization than any commercial Cu(0) powder, Cu(0) wire, or Cu(I)Br and achieving 80% conversion in only 5 min reaction time. Despite the high rate, a living polymerization was observed with linear evolution of molecular weight, narrow polydispersity, no induction period, and high retention of chain‐end functionality. In addition to providing an unprecedentedly fast, yet controlled LRP of MA, these studies suggest that the very small “nascent” Cu(0) species formed via disproportionation in SET‐LRP are the most active catalysts. Thus, when bulk Cu(0) powder or wire may be the most abundant catalyst and dictates the overall kinetics, any Cu(0) produced via disproportionation will be rapidly consumed and contributes to the overall catalytic cycle. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 403–409, 2010  相似文献   

5.
Single Electron Transfer‐Living Radical Polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with well defined topology. In SET‐LRP, certain combinations of solvents and ligands facilitate the disproportionation of in situ generated Cu(I) species into “nascent” Cu(0) and Cu(II) species. A combination of heterogeneous and “nascent” Cu(0) activation yields polymers with very high chain end functionality. Under suitable conditions the tolerance toward oxygen must be increased since Cu(0), the activator in SET‐LRP, acts as an oxygen scavenger in all inert gas purification systems. Here we demonstrate that SET‐LRP of methyl acrylate can be conducted in the presence of air. The addition of a small amount of reducing agent hydrazine hydrate to the reaction mixture reduces Cu2O generated by the oxidation of Cu(0) with air, regenerating Cu(0) and allowing for the synthesis of polymers with predictable molecular weight and perfect retention of chain end functionality. The kinetics plots obtained under these conditions were identical to these generated by degassed samples. High conversions were achieved within a very short reaction time. In these SET‐LRP experiments, the reagents were not deoxygenated or subjected to standard degassing procedures such as freeze‐pump‐thaw or nitrogen sparging. This simple SET‐LRP procedure provides an efficient and economical approach to the synthesis of functional macromolecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1190–1196, 2010  相似文献   

6.
The commercially available tris(2‐aminoethyl)amine (TREN) was used as ligand to mediate the single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate in dimethyl sulfoxide initiated with the bifunctional initiator bis(2‐bromopropionyl)ethane and catalyzed by both nonactivated and activated Cu(0) wire. A comparative study between TREN and tris(2‐dimethylaminoethyl)amine (Me6‐TREN) ligand, that is more commonly used in SET‐LRP, demonstrated that TREN provided a slower polymerization but the chain‐ends functionality of the resulting bifunctional poly(methyl acrylate) was near quantitative and comparable to that obtained when Me6‐TREN was used as a ligand. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

7.
SET‐LRP is mediated by a combination of solvent and ligand that promotes disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Therefore, the diversity of solvents suitable for SET‐LRP is limited. SET‐LRP of MA in a library of solvents with different equilibrium constants for disproportionation of Cu(I)X such as DMSO, DMF, DMAC, EC, PC, EtOH, MeOH, methoxyethanol, NMP, acetone and in their binary mixtures with H2O was examined. H2O exhibits the highest equilibrium constant for disproportionation of Cu(I)X. The apparent rate constant of the polymerization exhibits a linear increase with the addition of H2O. This is consistent with higher equilibrium constants for disproportionation generated by addition of H2O to organic solvents. Furthermore, with the exception of alcohols and carbonates, the rate constant of polymerization in binary mixtures could be correlated with the Dimroth‐Reichardt solvent polarity parameter. This is consistent with the single‐electron transfer mechanism proposed for SET‐LRP that involves a polar transition state. These experiments demonstrate that the use of binary mixtures of solvents with H2O provides a new, simple and efficient method for the elaboration of a large diversity of reaction media that are suitable for SET‐LRP even when one of the two solvents does not mediate disproportionation of Cu(I)X. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5577–5590, 2009  相似文献   

8.
Disproportionation of Cu(I)X is the major step in Single‐Electron Transfer Living Radical Polymerization (SET‐LRP). The disproportionation of Cu(I)X mediated by Me6‐TREN in various solvents was studied through UV–vis spectroscopy and Dynamic Light Scattering (DLS). UV–vis experiments reveal that disproportionation is dependent on both solvent composition and concentration of Me6‐TREN, consistent with a revised equilibrium expression and corroborated by mathematical models. Electrochemistry data do not accurately predict the extent of disproportionation in the presence of Me6‐TREN. Exemplified by DMSO, a favored solvent for SET‐LRP, UV–vis spectroscopy shows that under certain conditions disproportionation is four‐orders of magnitude greater than the value reported from electrochemistry experiments. Through UV–vis and DLS analysis, it was demonstrated that DMSO, DMF, DMAC, and NMP, stabilize colloidal Cu(0), while acetone, EtOH, EC, MeOH, PC, and H2O facilitate agglomeration of Cu(0) particles. Additionally, for colloidal Cu(0) stabilizing solvents, the amount of ligand and solvent composition decide the particle size distribution. Therefore, the kinetics of SET‐LRP are cooperatively and synergistically determined by the complex interplay of solvent polarity, the extent of disproportionation in the solvent/ligand mixture, and the ability of that mixture to stabilize colloidal Cu(0) or control particle size distribution. The implications of these results for SET‐LRP are discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5606–5628, 2009  相似文献   

9.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

10.
A mechanistic comparison of the ATRP and SET‐LRP is presented. Subsequently, simulation of kinetic experiments demonstrated that, in the heterolytic outer‐sphere single‐electron transfer process responsible for the SET‐LRP, the activation of the initiator and of the propagating dormant species is faster than of the homolytic inner‐sphere electron‐transfer process responsible for ATRP. In addition, simulation experiments suggested that in both polymerizations the rate of deactivation is similar. In SET‐LRP, the Cu(II)X2/L deactivator is created by the disproportionation of Cu(I)X/L inactive species, while in ATRP its concentration is mediated by the bimolecular termination. The combination of higher rate of activation with the creation of deactivator via disproportionation provides, via SET‐LRP, an ultrafast synthesis of polymers with very narrow molecular weight distribution at room temperature. SET‐LRP is mediated by a catalytic amount of Cu(0), and under suitable conditions, bimolecular termination is virtually absent. Kinetic and simulation experiments have also demonstrated that the amount of water available in commercial solvents and monomers is sufficient to induce the disproportionation of Cu(I)X/L into Cu(0) and Cu(II)X2/L and, subsequently, to change the polymerization mechanism from ATRP to SET‐LRP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1835–1847, 2007.  相似文献   

11.
Polymerization of methyl acrylate (MA) catalyzed by Cu(0) is carried out in toluene using a range of alcohols and phenol as additives to facilitate the reaction. The polar/coordinating additives promote disproportionation of Cu(I) to Cu(0), the proposed active species in single electron transfer living radical polymerization (SET‐LRP), and Cu(II) whilst toluene maintains solubility of the reagents and products. In this work, the use of alcohols as additives is optimized. Polymerizations are monitored in real time using rapid chromatography to obtain conversion and molecular weight distribution data without the necessity of manual sampling. Rapid gel permeation chromatography with low angle laser light scattering detection is shown to be a viable method of obtaining molecular weight distribution data in real time compared with conventional analytical techniques. Moreover, the changes in CuBr2 concentration during SET‐LRP reactions are monitored online using a photodiode array detector. Finally, the kinetics of SET‐LRP of MA using an ultra pure highly porous Cu(0) is performed and a detailed discussion on the role of Cu(II) is provided. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

13.
Computational studies on the heterolytic bond dissociation energies and electron affinities of methyl 2‐bromopropionate (MBP) and ethyl 2‐bromoisobutyrate (EBiB) in the dissociative electron transfer (DET) step of single electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA) combined with kinetic experiments were performed in an effort to design the most efficient initiation system. This study suggests that EBiB is more effective than MBP in the SET‐LRP of acrylates catalyzed by Cu(0) wire, thus being a true electronic mimic of the dormant PMA species. EBiB allows for a more predictable dependence of the molecular weight evolution and distribution. This is exemplified by the absence of a deviation in the PMA molecular weight from theoretical values at low conversions, as a result of a faster SET activation with EBiB than with MBP. The enhanced control over molecular weight evolution was also observed in the SET‐LRP of MA initiated with bifunctional initiators similar in structure to MBP and EBiB, suggesting a higher reactivity than MBP in the SET activation, which matches closely that of the polymer dormant chains. The use of bifunctional initiators in conjunction with activated Cu(0) wire in SET‐LRP allows for dramatically accelerated polymerizations, although still providing for exceptional control of the molecular weight evolution and distribution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The single‐electron transfer living radical polymerization (SET‐LRP) of vinyl chloride (VC) initiated with CHBr3 in dimethylsulfoxide (DMSO) at 25 °C was investigated using Cu(0) powder and Cu(0) wire as the catalyst. It was determined that living kinetics and high conversion are achieved only through the proper calibration of the ratio between Cu(0) and TREN and the concentration of VC in DMSO. For both Cu(0) powder and Cu(0) wire, optimum conversion was achieved with higher levels of TREN than reported in earlier preliminary reports and under more dilute conditions. Using these conditions, 85+% conversion of VC could be achieved with Cu(0) powder and wire to produce white poly(vinyl chloride) (PVC) with Mn = 20,000 and Mw/Mn = 1.4–1.6 in 360 min. The use of Cu(0) wire provides the most effective catalytic system for the LRP of PVC allowing for simple removal and recycling of the catalyst. In the Cu(0) wire‐catalyzed SET‐LRP of VC, the consumption of Cu(0) was monitored as a function of conversion. From these studies, it is evident that the catalyst can be recycled extensively before significant exchange of Cu(0) into Cu(II)X2 and change in catalyst surface area is observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 164–172, 2010  相似文献   

15.
The Cu(0)/Me6‐TREN‐catalyzed single‐electron transfer mediated living radical polymerization (SET‐LRP) of methyl acrylate in the presence of the classic 4‐methoxyphenol free radical inhibitor was investigated. Kinetic experiments, combined with 1H NMR, and MALDI‐TOF MS analysis of the resulting polyacrylates demonstrated that SET‐LRP is a robust synthetic method that does not require the purification of the monomers to remove the radical inhibitor. It is anticipated that these results will contribute to the expansion of technological and fundamental applications of SET‐LRP since it allows the synthesis of polymers with a structural perfection that previously was not accessible by any other method, starting from unpurified monomers, solvents, initiators, and ligands. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3174–3181, 2008  相似文献   

16.
SET‐LRP requires a combination of ligand and solvent that mediates the disproportionation of Cu(I)X into Cu(0) activator, and Cu(II) deactivator. The solvent also modulates the kinetics of the reaction. More polar solvents, including mixtures of water and organic solvents enhance the rate of polymerization in accord with the Dimroth‐Reichardt parameter. Here, it is demonstrated that a similar effect is observed in binary mixtures of organic solvents, wherein the addition of a more polar solvent to a less polar solvent provides a linear increase in the apparent rate constant of propagation, k. However, this linear relationship does not hold for the entire range of volume fraction for binary mixtures when ethylene carbonate (EC) or MeOH are one of the two components. Results herein, suggest that the kinetics of SET‐LRP in these solvent mixtures is cooperatively and synergistically determined by polarity, degree of disproportionation, and also by another parameter related to the ability of the solvent to stabilize colloidal Cu(0) and determine its particle size. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5591–5605, 2009  相似文献   

17.
18.
Cu(0)‐wire/Me6‐TREN is a well established catalyst for living radical polymerization via SET–LRP. Here, it is demonstrated that this polymerization is not just living, but it is in fact the first example of immortal living radical polymerization. The immortality of SET–LRP mediated with Cu(0) wire was demonstrated by attempting, in an unsuccessful way, to irreversible interrupt multiple times the polymerization via exposure to O2 from air. SET–LRP indeed stopped each time when the reaction mixture was exposed to air. However, the SET–LRP reaction, was restarted each time after resealing the reaction vessel and reestablishing the catalytic cycle with the same Cu(0) wire, to produce the same conversion as in the conventional uninterrupted SET–LRP process. Despite the interruption by O2, the reactivated SET–LRP had a good control of molecular weight, molecular weight evolution, and molecular weight distribution, with perfect retention of chain‐end fidelity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2716–2721, 2010  相似文献   

19.
In this work, single electron transfer‐living radical polymerization (SET‐LRP) was catalyzed by in situ Cu(0) generated from copper sulphate pentahydrate (CuSO4·5H2O) and hydrazine hydrate (N2H4·H2O) at 25 °C. The polymerization occurred smoothly with moderate controllability: the polymerization rates increased by the increases of N2H4·H2O, and the initiator concentration had an optimal value on the polymerization rate; the number‐average molecular weights (Mn,GPC) increased with monomer conversions and polydispersities were below 1.40. The Mn,GPC deviated much from theoretical ones with about 50% polymer chain‐end fidelities. Some side reactions stemming from the strong reduction performance of N2H4·H2O were responsible for the mildly controlled polymerizations. This polymerization can be conducted in SET‐LRP unfavorable solvents or in bulk, such as toluene and tetrahydrofuran, owing to the H2O contained in CuSO4·5H2O and N2H4·H2O. On account of the utilization of CuSO4·5H2O, an inactive Cu(II) compounds in LRP area, this work confirmed from experimental level that it was Cu(0) which acted as activator and mediator in SET‐LRP. This work provided a first example of in situ Cu(0) catalyzing SET‐LRP with CuSO4·5H2O as a copper source. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Single‐electron transfer living radical polymerization (SET‐LRP) has developed as a reliable, robust and straight forward method for the construction well‐defined polymers. To span an even larger variety of functional monomers, we investigated the copolymerization of methyl methacrylate with methacrylic acid by SET‐LRP. Copolymerizations were catalyzed by Cu(0)/Me6‐TREN and performed in MeOH/H2O mixtures at 50 °C. The SET‐LRP copolymerizations of varying methacrylic acid content were evaluated by kinetic experiments. At low (2.5%) and moderate (10%) MAA loadings, the copolymerizations obeyed perfect first order kinetics (kpapp = 0.008 min?1 and kpapp = 0.006 min?1) and exhibited a linear increase in molecular weights with conversion providing narrow molecular weight distributions. The SET‐LRP of MMA/25%‐MAA was found to be significantly slower (kpapp = 0.0035 min?1). However, a reasonable first‐order kinetics in monomer consumption was maintained, and the control of the polymerization process was preserved since the molecular weight increased linearly with conversion and could therefore be adjusted. This work demonstrates that the copolymerization of methacrylic acid by SET‐LRP is feasible and the design of well‐defined macromolecules comprising acidic functionality can be achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号