首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 2D 4d‐4f heterometallic coordination polymers, [LnAg(Py26DC)2(H2O)3] · 3H2O [Ln = Nd ( 1 ), La ( 2 ); H2Py26DC = pyridine‐2,6‐dicarboxylic acid], and one 2D lanthanide homometallic coordination polymer, [Ln(Py25DC)(ox)0.5(H2O)2] [Ln = Tm ( 3 ); H2Py25DC = pyridine‐2,5‐dicarboxylic acid; ox = oxalate], were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single‐crystal X‐ray diffraction analysis. Both complexes 1 and 2 are isostructural and exhibit 3‐connected 2D heterometallic layer structures with the Schläfli symbol of (82 · 10), whereas complex 3 represents an extended 2D homometallic network structure with (4,4) topology.  相似文献   

2.
The reactions of Ln(NO3)3 · 6H2O and 4‐acetamidobenzoic acid (Haba) with 4,4′‐bipyridine (4,4′‐bpy) in ethanol solution resulted in three new lanthanide coordination polymers, namely {[Ln(aba)3(H2O)2] · 0.5(4,4′‐bpy) · 2H2O} [Ln = Sm ( 1 ), Gd ( 2 ), and Er ( 3 ), aba = 4‐acetamidobenzoate]. Compounds 1 – 3 are isomorphous and have one‐dimensional chains bridged by four aba anions. 4,4′‐Bipyridine molecules don’t take part in the coordination with LnIII ions and occur in the lattice as guest molecules. Moreover, the adjacent 1D chains in the complex are further linked through numerous N–H ··· O and O–H ··· O hydrogen bonds to form a 3D supramolecular network. In addition, complex 1 in the solid state shows characteristic emission in the visible region at room temperature.  相似文献   

3.
Reactions of pyrazine‐2,3‐dicarboxylic acid (H2pzdc), cobalt nitrate and lanthanide (Ln) oxide under hydrothermal conditions result in four new 3d‐4f heterometal coordination polymers, namely, [Ln2Co(pzdc)4(H2O)6] · 2H2O [Ln = La ( 1 ), Pr ( 2 ), Eu ( 3 ) and Gd ( 4 )]. All compounds were characterized by elemental analysis, infrared spectroscopy, thermal gravimetric analysis, and X‐ray diffraction. The compounds exhibit a three‐dimensional (3D) brick‐like structure with rectangular‐shaped nano‐scale channels along a axis direction, made up of wave‐like layers containing [Ln(pzdc)]+ units, which are connected by one‐dimensional (1D) chain of [Co(pzdc)2]2–. The catalytic properties of compounds 1 and 3 were investigated in the synthesis of cyanohydrins at room temperature under solventless conditions. They showed similar catalytic activities with very high conversions of benzaldehyde and high selectivity towards cyanohydrin. The control experiment without addition of the coordination polymers only reached 16 % conversion. Other aldehydes could also be converted totally under shorter reaction times also with very high selectivities for the corresponding cyanohydrins. Compound 1 could also be recycled in another catalytic cycle.  相似文献   

4.
Investigating the coordination chemistry of H2CDA (4‐oxo‐1,4‐dihydro‐2,6‐pyridinedicarboxylic acid) with rare earth salts Ln(NO3)3 under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H2CDA charged to its position isomer, enol type structure, H3CAM (4‐hydroxypyridine‐2,6‐dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H2O)3]n [Ln = La ( 1 ), Pr, ( 2 )] and {[Ln(CAM)(H2O)3] · H2O}n [Ln = Nd, ( 3 ), Sm, ( 4 ), Eu, ( 5 ), Y, ( 6 )] were synthesized and characterized. The X‐ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3 – 6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C2/c space group, whereas 3 – 6 crystallize in the monoclinic system with space group P21/n. In the two kinds of structures, H3CAM displays two different coordination modes. The SmIII and EuIII complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm.  相似文献   

5.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

6.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

7.
利用硫代二乙酸配体[thiodiacetic acid = H2tda]与稀土盐[SmCl3·nH2O,DyCl3·nH2O]反应合成了两种新型稀土配合物[Ln2(tda)3(H2O)2]n (Ln = Sm(1), Dy(2)),单晶结构分析表明:两个配合物结构相同,均是通过以共边多面体[Ln2O16]为基本单元的一维稀土金属链拓展而成的二维层状结构。有趣的是,在配合物中,硫代二乙酸配体展现了两种配位模式:双“顺-顺桥式双齿、螫合-桥式三齿”模式和双“螯合-桥式三齿、顺-反桥式双齿”模式;正是通过配体这两种配位方式的连接,上述一维稀土金属链扩展为具有(3,4,5,6)连接(47·68)(44·66) (45·6)(46)(43)拓扑结构的二维网络。荧光性质研究表明,在室温下镝配合物呈现黄色荧光,钐配合物呈现鲑鱼粉色荧光。  相似文献   

8.
Two three‐dimensional (3D) lanthanide coordination polymers (CPs) of the general formula [Ln2(PDOA)3(H2O)]n · 2nH2O [Ln = Gd ( 1 ), Tb ( 2 )] were synthesized by solvothermal reactions of the corresponding rare‐earth chloride and pyrazine‐2,3‐dicarboxylic acid (H2PDOA). The CPs were structurally characterized by single‐crystal X‐ray diffraction, IR spectroscopy, thermogravimetry, and elemental analysis. CPs 1 and 2 are isostructural and crystallize in the monoclinic space group P21/c. The frameworks are constructed from dinuclear lanthanide building blocks in which the PDOA2– ions adopt three coordination modes, μ3kO;kO;kN,O, μ4kN,O;kO;kO;kO,O, and μ5kN,O;kO;kO;kO,O;kO, respectively. The Tb3+ polymer of 2 exhibits characteristic photoluminescence in the visible region. The magnetic properties of CP 1 were investigated by measuring the magnetic susceptibilities in the temperature range 1.8–300 K.  相似文献   

9.
Five new 4,5‐dichlorophthalate (dcpa)‐extended lanthanide coordination polymers (CPs) with formulas [Ln2(H2O)(dcpa)3]n (Ln = Tb for 1 , Sm for 2 , Pr for 3 , and Nd for 4 ) and [Yb(H2O)2(dcpa)(Hdcpa)]n ( 5 ) were solvothermally synthesized. Structural determinations demonstrate that CPs 1 – 4 are crystallographically isostructural, exhibiting an infinite two‐dimensional layer with dimeric {Ln2(COO)3} subunits extended by aromatic skeleton of fully deprotonated dcpa2– connectors. In contrast, complex 5 features a one‐dimensional broad ribbon with centrosymmetric {Yb2(COO)2} subunits propagated by pairs of ditopic dcpa2– ligands. Interestingly, the anionic dcpa2– connector can serve as a good antenna ligand to sensitize the characteristic emissions of the different LnIII ions in both the ultraviolet (for 1 – 3 ) and near‐infrared (for 4 and 5 ) regions.  相似文献   

10.
The first four examples of organic‐inorganic hybrid lanthanide‐silver heterometallic frameworks, namely, [AgLn5‐C2O4)(SO4)(H2O)2] [Ln = Eu ( 1 ) and Sm ( 2 )] and [AgLn4‐C2O4)0.56‐C2O4)0.5(SO4)(H2O)] [Ln = Tb ( 3 ) and Dy ( 4 )] based on oxalate and sulfate anions were synthesized by hydrothermal reactions of lanthanide oxide, silver nitrate, oxalic acid and sulfuric acid. All structures contain ladder‐like inorganic lanthanide sulfato chains, which are further connected together through silver atoms by oxalate anions with different coordination behavior (μ5‐C2O4: 1 and 2 , μ6‐C2O4 mixed μ4‐C2O4: 3 and 4 ) to generate two types of 3D networks. The luminescent properties of these compounds were also studied.  相似文献   

11.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

12.
Two novel lanthanide‐based coordination polymers with 2D lattice‐type motif, [Ln2(CAM)3(H2O)4]·2H2O (CAM = 4‐Hydroxypyridine‐2,6‐dicarboxylate; Ln = Tb( 1 ), Pr( 2 )), have been prepared by hydrothermal reaction of Ln(OH)3, CAM and water at 160 °C and characterized by single‐crystal X‐ray diffraction analysis, IR and TGA. The investigation of luminescent property reveals that 1 exhibits characteristic green emission of Tb3+ ions.  相似文献   

13.
Four 3D lanthanide organic frameworks from potassium pyrazine‐2, 3, 5, 6‐tetracarboxylate (K4pztc) or potassium pyridine‐2, 3, 5, 6‐tetracarboxylate (K4pdtc), namely, {[KEu(pztc)(H2O)2] · H2O}n ( 1 ), {[KTb(pztc)(H2O)2] · 1.25H2O}n ( 2 ), {[KLn(pdtc)(H2O)] · H2O}n [Ln = Gd ( 3 ), Ho ( 4 )], were synthesized by reaction of the corresponding lanthanide oxides with K4pztc or K4pdtc in presence of HCl under hydrothermal conditions, and characterized by elemental analysis, TGA, IR and fluorescence spectroscopy as well as X‐ray diffraction. In complexes 1 and 2 , the dodecadentate chelator pztc4– links four LnIII ions and four KI ions. The coordination mode of the pztc4– ligand is reported for the first time herein. Complexes 3 and 4 are isostructural with earlier reported Nd, Dy, Er complexes. Moreover, the EuIII and TbIII complexes exhibit the characteristic luminescence.  相似文献   

14.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

15.
Three lanthanide complexes with the ligand 4‐sulfophthalate (sp3–), [Ln(H2O)2(sp)]n [Ln = Dy ( 1 ), Tb ( 2 ), and Er ( 3 )], were solvo‐/hydrothermally synthesized by changing the rare earth cations, and were characterized structurally and photophysically. Complexes 1 – 3 are isostructural, exhibiting a two‐dimensional layered structure with centrosymmetric dinuclear subunits infinitely extended by 4‐connected sp3– connectors. Photoluminescence spectra of 1 – 3 demonstrate that anionic sp3– ligand can serve as a functionalized chromophore to sensitize the luminescent emission of the lanthanide ion, suggesting that the sp3–‐involved lanthanide complexes can be used as novel optical materials.  相似文献   

16.
Three series of lanthanide coordination polymers, namely catena‐poly[[lanthanide(III)‐μ2‐(benzene‐1,2‐dicarboxylato)‐μ2‐[2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]] monohydrate], {[Ln(C8H4O4)(C22H14N3O2)]·H2O}n or {[Ln(1,2‐bdc)(L)]·H2O}n, with lanthanide (Ln) = dysprosium (Dy, 1 ), holmium (Ho, 2 ) and erbium (Er, 3 ), poly[bis(μ2‐benzene‐1,3‐dicarboxylato)bis[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]dilanthanide(III)], [Ln2(C8H4O4)2(C22H14N3O2)2]n or [Ln2(1,3‐bdc)2(L)2]n, with Ln = gadolinium (Gd, 4 ), Ho ( 5 ) and Er ( 6 ), and poly[(μ2‐benzene‐1,4‐dicarboxylato)[μ2‐2‐(2,2′:6′,2′′‐terpyridin‐4′‐yl)benzoato]lanthanide(III)], [Ln(C8H4O4)(C22H14N3O2)]n or [Ln(1,4‐bdc)(L)]n, with Ln = Dy ( 7 ), Ho ( 8 ), Er ( 9 ) and ytterbium (Yb, 10 ), were synthesized under hydrothermal conditions and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. Compounds 1 – 3 possess one‐dimensional loop chains with Ln2(COO)2 units, which are extended into three‐dimensional (3D) supramolecular structures by π–π interactions. Isostructural compounds 5 and 6 show 6‐connected 3D networks, with pcu topology consisting of Ln2(COO)2 units. Compounds 7 – 10 display 8‐connected 3D frameworks with the topological type rob , consisting of Ln2(COO)2 units. The influence of the coordination orientations of the aromatic dicarboxylate groups on the crystal structures is discussed.  相似文献   

17.
Postsynthetic installation of lanthanide cubanes into a metallosupramolecular framework via a single‐crystal‐to‐single‐crystal (SCSC) transformation is presented. Soaking single crystals of K6[Rh4Zn4O(l ‐cys)12] (K6[ 1 ]; l ‐H2cys=l ‐cysteine) in a water/ethanol solution containing Ln(OAc)3 (Ln3+=lanthanide ion) results in the exchange of K+ by Ln3+ with retention of the single crystallinity, producing Ln2[ 1 ] ( 2Ln ) and Ln0.33[Ln4(OH)4(OAc)3(H2O)7][ 1 ] ( 3Ln ) for early and late lanthanides, respectively. While the Ln3+ ions in 2Ln exist as disordered aqua species, those in 3Ln form ordered hydroxide‐bridged cubane clusters that connect [ 1 ]6? anions in a 3D metal‐organic framework through coordination bonds with carboxylate groups. This study shows the utility of an anionic metallosupramolecular framework with carboxylate groups for the creation of a series of metal cubanes that have great potential for various applications, such as magnetic materials and heterogeneous catalysts.  相似文献   

18.
The reaction of a lanthanide(III) nitrate (Ln = Pr, Nd) with the base 2, 2′‐dipyridylamine (dpamH) afforded two very stable microcrystalline compounds. These compounds were characterized as complex salts with the general formula [Ln(NO3)6] · 3[dpamH‐H+] · H2O, where the dpamH ligand is not coordinated, but exists in its protonated form serving as counterion (dipyridylammonium cation), as it was revealed by single‐crystal X‐ray diffraction studies. Each one of the nitrate ions is coordinated, however, in a bidentate manner with the lanthanide(III) ion, which obtains coordination number twelve. All organic dpamH‐H+ cations are arranged in two columns parallel to the a axis of the cell forming pairs of almost parallel cationic molecules at a distance of about 3.5 Å. Inside each pair the molecules interact by strong π–π interactions. The water molecules, arranged between the inorganic anions [Ln(NO3)6]3–, bridge them by strong hydrogen bonds, involving the water proton and one nitrate oxygen. The lattice can be described as made from successive organic and inorganic alternating parallel columns interacting between them with strong hydrogen bonds. The thermal stability and decomposition mode of the two lanthanide compounds were studied by the simultaneous TG/DTG‐DTA technique and compared with the starting hexahydrate lanthanide(III) salts and the dipyridylamine.  相似文献   

19.
Four three‐dimensional heterometallic coordination polymers, [Ln2Cu4I3(IN)7(H2O)]n ( 1 , 2 ) and [LnCu3.5I3(IN)3.5(H2O)3]n · nH2O ( 3 , 4 ) [HIN = isonicotinic acid, Ln = Nd ( 1 ), Gd ( 2 ), La ( 3 ), Eu ( 4 )] were hydrothermally synthesized by using lanthanide oxides, isonicotinic acid, copper chloride, and potassium iodide. The different molar ratio of raw materials results in two distinct types of three‐dimensional frameworks of compounds 1 – 4 . The structure of compounds 1 and 2 are constructed by the layer modules of [Ln2(IN)7(H2O)]nn– and Cu4I3 clusters, whereas that of compounds 3 and 4 are built by dimeric Ln2(IN)6(H2O)6 and layered polymeric [Cu7I6]nn+ units.  相似文献   

20.
Two heterometallic 3d–4f coordination polymers, [Gd(CuL)2(Hbtca)(btca)(H2O)] · 2H2O ( 1 ) and [Er(CuL)2(Hbtca)(btca)(H2O)] · H2O · CH3OH ( 2 ) (CuL, H2L = 2,3‐dioxo‐5,6,14,15‐dibenzo‐1,4,8,12‐tetraazacyclo‐pentadeca‐7,13‐dien; H2btca = benzotriazole‐5‐carboxylic acid) were synthesized by solvothermal methods and characterized by single‐crystal X‐ray diffraction. Complexes 1 and 2 exhibit a double‐strand meso‐helical chain structures formed by [LnIIICuII2] (LnIII = Gd, Er) units by oxamide and benzotriazole‐5‐carboxylate bridges. They are isomorphic except that one free water molecule of 1 is replaced by a methanol molecule. All 1D chains are further interlinked by hydrogen bonds resulting in a 3D supramolecular architecture. The magnetic properties of the compound 1 and 2 are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号