首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In the title compound, catena‐poly[[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[1,1′‐biphenyl]‐4,4′‐dicarboxylato‐[[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]chloridozinc(II)]‐μ‐[N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]], [Zn2(C14H8O4)Cl2(C26H22N4O2)3]n, the ZnII centre is four‐coordinate and approximately tetrahedral, bonding to one carboxylate O atom from a bidentate bridging dianionic [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand, to two pyridine N atoms from two N,N′‐bis(pyridin‐3‐ylmethyl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide ligands and to one chloride ligand. The pyridyl ligands exhibit bidentate bridging and monodentate terminal coordination modes. The bidentate bridging pyridyl ligand and the bridging [1,1′‐biphenyl]‐4,4′‐dicarboxylate ligand both lie on special positions, with inversion centres at the mid‐points of their central C—C bonds. These bridging groups link the ZnII centres into a one‐dimensional tape structure that propagates along the crystallographic b direction. The tapes are interlinked into a two‐dimensional layer in the ab plane through N—H...O hydrogen bonds between the monodentate ligands. In addition, the thermal stability and solid‐state photoluminescence properties of the title compound are reported.  相似文献   

2.
Catalytic aromatic amination is achieved in water under heterogeneous conditions by the use of immobilized palladium complexes coordinated with the amphiphilic polystyrene‐poly(ethylene glycol) resin‐supported di(tert‐butyl)phosphine ligand. Aromatic amination of aryl halides with diphenylamine and N,N‐double arylation of anilines with bromobenzene were found to proceed in water with broad substrate tolerance to give the triarylamines in high yield with high recyclability of the polymeric catalyst beads. Very little palladium leached from the polymeric catalyst under the water‐based reaction conditions to provide a green and clean (metal‐uncontaminated) protocol for the preparation of triarylamines, including the optoelectronically active N,N,N′,N′tetraaryl‐1,1′‐biphenyl‐4,4′‐diamines (TPDs).  相似文献   

3.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

4.
In this study, a series of benzotriazole (BTz) and triphenylamine (TPA)‐based random copolymers; poly4‐(5‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)thiophen‐2‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P1 ), poly4′‐(2‐dodecyl‐7‐methyl‐2H‐benzo[d][1,2,3]triazol‐4‐yl)‐N‐(4′‐methyl‐[1,1′‐biphenyl]‐4‐yl)‐N‐phenyl‐[1,1′‐biphenyl]‐4‐amine ( P2 ), and poly4‐(5′‐(2‐dodecyl‐7‐(5‐methylthiophen‐2‐yl)?2H‐benzo[d][1,2,3]triazol‐4‐yl)‐[2,2′‐bithiophen]‐5‐yl)‐N‐(4‐(5‐methylthiophen‐2‐yl)phenyl)‐N‐phenylaniline ( P3 ) were synthesized to investigate the effect of TPA unit and π‐bridges on electrochemical and spectroelectrochemical properties of corresponding polymers. The synthesis was carried out via Stille coupling for P1 , P3 , and Suzuki coupling for P2 . Electrochemical and spectral results showed that P1 has an ambipolar character, in other words it is both p‐type and n‐type dopable, whereas P2 and P3 have only p‐doping property. Effect of different π‐bridges and TPA unit on the HOMO and LUMO energy levels, switching time, and optical contrast were discussed. All polymers are promising materials for electrochromic devices. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 537–544  相似文献   

5.
A set of eight helical diamines were designed and synthesized to demonstrate their relevance as all‐in‐one materials for multifarious applications in organic light‐emitting diodes (OLEDs), that is, as hole‐transporting materials (HTMs), EMs, bifunctional hole transporting + emissive materials, and host materials. Azahelical diamines function very well as HTMs. Indeed, with high Tg values (127–214 °C), they are superior alternatives to popular N,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐(1,1′‐biphenyl)‐4,4′‐diamine (NPB). All the helical diamines exhibit emissive properties when employed in nondoped as well as doped devices, the performance characteristics being superior in the latter. One of the carbohelical diamines (CHTPA) serves the dual function of hole transport as well as emission in simple double‐layer devices; the efficiencies observed were better by quite some margin than those of other emissive helicenes reported. The twisting endows helical diamines with significantly high triplet energies such that they also function as host materials for red and green phosphors, that is, [Ir(btp)2acac] (btp=2‐(2′‐benzothienyl)pyridine; acac=acetylacetonate) and [Ir(ppy)3] (ppy=2‐phenylpyridine), respectively. The results of device fabrications demonstrate how helicity/ helical scaffold may be diligently exploited to create molecular systems for maneuvering diverse applications in OLEDs.  相似文献   

6.
A new triphenylamine‐bridged fluoranthene derivative, 4‐(7,10‐diphenylfluoranthen‐8‐yl)‐N‐[4‐(7,10‐diphenylfluoranthen‐8‐yl)phenyl]‐N‐phenylaniline (BDPFPA), with a high glass transition temperature of 220 °C has been synthesized and characterized. BDPFPA is a highly fluorescent and versatile material that can be used as a nondoped green emitter and as a hole transporter. BDPFPA was used in a standard trilayer device as the emitting layer, which showed a low turn‐on voltage (<3 V) and a high efficiency of 11.6 cd A?1. The device also shows little efficiency roll‐off at high brightness. For example, the efficiency can still be maintained at 11.4 cd A?1 (5.4 lm W?1) at a brightness of 10 000 cd m?2. These results are among the best reported for nondoped fluorescent green organic light‐emitting diodes. A simple bilayer device, in which BDPFPA serves as a hole‐transporting layer, has a maximum power efficiency of 3.3 lm W?1 and the performance is nearly 40 % higher than that of an N,N′‐bis(1‐naphthyl)‐N,N′‐ diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB)‐based standard device.  相似文献   

7.
1,1′‐Biphenyl derivatives with amino acid/peptide substitution at C(2) and C(2′) (‘peptide‐biphenyl hybrids', 6 – 8 ) have been prepared by direct N‐acylation of amino acid/peptide derivatives with 1,1′‐biphenyl‐2,2′‐dicarbonyl dichloride ( 5 ). Both conformers, which arise from the rotation around the aryl aryl bond, have been detected by 1H‐NMR spectroscopy. Single atropisomers of each 6 ((R)‐configuration at the stereogenic axis) and 7 ((S)‐configuration at the stereogenic axis) have been obtained in quantitative yield by slow evaporation of methanolic solutions. The procedures are dynamic atropselective resolutions (asymmetric transformations of the second kind). The crystal structures of the peptide‐biphenyl hybrids 6 and 7 show highly ordered molecular and supramolecular structures with extensive intramolecular and intermolecular H‐bonding.  相似文献   

8.
The porous metal–organic framework (MOF) {[Zn2(TCPBDA)(H2O)2]?30 DMF?6 H2O}n ( SNU‐30 ; DMF=N,N‐dimethylformamide) has been prepared by the solvothermal reaction of N,N,N′,N′‐tetrakis(4‐carboxyphenyl)biphenyl‐4,4′‐diamine (H4TCPBDA) and Zn(NO3)2?6 H2O in DMF/tBuOH. The post‐synthetic modification of SNU‐30 by the insertion of 3,6‐di(4‐pyridyl)‐1,2,4,5‐tetrazine (bpta) affords single‐crystalline {[Zn2(TCPBDA)(bpta)]?23 DMF?4 H2O}n ( SNU‐31 SC ), in which channels are divided by the bpta linkers. Interestingly, unlike its pristine form, the bridging bpta ligand in the MOF is bent due to steric constraints. SNU‐31 can be also prepared through a one‐pot solvothermal synthesis from ZnII, TCPBDA4?, and bpta. The bpta linker can be liberated from this MOF by immersion in N,N‐diethylformamide (DEF) to afford the single‐crystalline SNU‐30 SC , which is structurally similar to SNU‐30 . This phenomenon of reversible insertion and removal of the bridging ligand while preserving the single crystallinity is unprecedented in MOFs. Desolvated solid SNU‐30′ adsorbs N2, O2, H2, CO2, and CH4 gases, whereas desolvated SNU‐31′ exhibits selective adsorption of CO2 over N2, O2, H2, and CH4, thus demonstrating that the gas adsorption properties of MOF can be modified by post‐synthetic insertion/removal of a bridging ligand.  相似文献   

9.
Two zinc(II) coordination polymers, namely [Zn2(bptc)(DMF)2(H2O)]n ( 1 ) and [Zn(bptc)0.5(DMA)]n ( 2 ) (H4bptc = biphenyl‐3,3′,5,5′‐tetracarboxylic acid, DMF = N,N′‐dimethylformamide, DMA = N,N′‐dimethylacetamide), were obtained under solvothermal conditions by varying the reaction solvents. Single crystal X‐ray diffraction analyses revealed that compound 1 features a 3D PtS type framework based on dinuclear [Zn2O(COO)2] subunits and compound 2 features a 3D lvt type framework based on paddle‐wheel shaped [Zn2(COO)4] subunits. Moreover, the luminescent and thermal stabilities of these two compounds were investigated.  相似文献   

10.
A series of two‐dimensional (2D) coordination polymers (CPs), namely poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)digadolinium(III)] N,N‐dimethylacetamide monosolvate], {[Gd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP1 ), poly[[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)didysprosium(III)] N,N‐dimethylacetamide monosolvate], {[Dy2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]·C4H9NO}n ( CP2 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)dineodymium(III)], [Nd2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP3 ), poly[bis(μ‐acetato)diaqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)bis(N,N‐dimethylacetamide)disamarium(III)], [Sm2(C16H6O8)(C2H3O2)2(C4H9NO)2(H2O)2]n ( CP4 ), has been synthesized from rigid biphenyl‐3,3′,5,5′‐tetracarboxylic acid under solvothermal conditions. Their structures have been determined by single‐crystal X‐ray diffraction analyses, elemental analyses, IR spectra, powder X‐ray diffraction and thermogravimetric analyses, and CP1 – CP4 crystallize in the monoclinic space group P21/n. CP1 – CP4 are isomorphous and feature similar 2D double layers, which are further extended via interlayer hydrogen‐bonding interactions into a three‐dimensional (3D) supramolecular structure. Hydrogen‐bonding interactions between N,N‐dimethylacetamide molecules and carboxylate O atoms strengthen the packing of the layers. The organic ligands interconnect with metal ions to generate 2D layered structures with a (4,4)‐connected net having {44.62} topology. CP1 has been investigated for its magnetic properties and magnetic susceptibility measurements were carried out in the range 2.0–300 K. The results of the magnetic measurements show weak antiferromagnetic coupling between the GdIII ions in CP1 . Moreover, the strong luminescence of CP2 and CP4 can be selectively quenched by the Fe3+ ion and toxic solvents (e.g. acetone).  相似文献   

11.
A novel dimeric diarylheptanoid, (5R,5′R)‐7,7′‐(6,6′‐dihydroxy‐5,5′‐dimethoxy[1,1′‐biphenyl]‐3,3′‐diyl)bis[5‐methoxy‐1‐phenylheptan‐3‐one] ( 1 ), and two new diarylheptanoids, (4E,6R)‐6‐hydroxy‐7‐(4‐hydroxy‐3‐methoxyphenyl)‐1‐phenylhept‐4‐en‐3‐one ( 2 ) and (4E,6R)‐6‐hydroxy‐1,7‐diphenylhept‐4‐en‐3‐one ( 3 ), together with seven known diarylheptanoids, were isolated from the rhizomes of Alpinia officinarum. Their structures were elucidated by application of extensive spectroscopic analyses and the modified Mosher method.  相似文献   

12.
Diphenylaminobiphenylated stryl based alternating copolymers with phenyl or fluorene, which were expected to have a terphenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant and a phenyl/fluorene/phenylene vinylene backbone containing an (N,N‐diphenylamino)biphenyl pendant, were synthesized by a Suzuki coupling reaction. The obtained copolymers were confirmed with various types of spectroscopy. The alternating copolymers showed good hole‐injection properties because of their low oxidation potential and good solubility and high thermal stability with a high glass‐transition temperature. The alternating copolymers showed blue emissions because of the adjusted conjugation lengths; the maximum wavelength was 460 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} and 487 nm for poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl] vinylene‐alt‐9,9‐dihexylfluorene}. The maximum brightness of indium tin oxide/poly(3,4‐ethylene dioxythiophene)/polymer/LiF/Al devices with poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐5‐(2′‐ethylhexyloxy)‐2‐methoxybenzene} or poly{4,4′‐biphenylene‐α‐[4″‐(N,N′‐diphenylamino)diphenyl]vinylene‐alt‐9,9‐dihexylfluorene} as the emitting layer was 250 or 1000 cd/m2, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 341–347, 2007  相似文献   

13.
Treatment of N,N′‐bis(aryl)formamidines (FXylH = N,N′‐bis(2,6‐dimethylphenyl)formamidine, FEtH = N,N′‐bis(2,6‐diethylphenyl)formamidine, FisoH = N,N′‐bis(2,6‐diisopropylphenyl)formamidine) with nBuLi in the presence of tmeda (= N,N,N′,N′‐tetramethylethylenediamine) led to deprotonation of the amidine affording [Li(FXyl)(tmeda)] ( 1 ), [Li(FEt)(tmeda)] ( 2 ) and [Li(Fiso)(tmeda)] ( 3 ) respectively. Similar treatment of FXylH and FisoH with [Na{N(SiMe3)2}] in THF and pmdeta (= N,N,N′,N″,N″‐pentamethyldiethylenetriamine) yielded [Na(FXyl)(pmdeta)] ( 4 ) and [Na(Fiso)(pmdeta)] ( 5 ). All complexes were characterised by spectroscopy (NMR and IR) and X‐ray crystallography. Due to the bulkiness of the formamidinate ligands and the multidentate nature of the supporting neutral amine ligands (tmeda and pmdeta), all compounds were mononuclear with η2‐chelating formamidinate ligands in the solid state.  相似文献   

14.
In order to investigate the effect of the organic ligands on the structures of coordination polymers, two new cadmium(II) coordination polymers based on the different dicarboxylate ligands, namely [Cd2(bpdc)2(DPNDI)2] · 3H2O · NMF ( 1 ) and [Cd(obb)(DPNDI)] ( 2 ) [H2bpdc = biphenyl‐4,4′‐dicarboxylate, H2obb = 4,4′‐oxybis(benzoic acid), DPNDI = N,N′‐bis(4‐pyridyl)‐1,4,5,8‐naphthalene tetracarboxydiimide, and NMF = N‐methylformamide), were synthesized under solvothermal condition and further characterized. Complex 1 shows a twofold interpenetrated pcu topology. Complex 2 possesses a two‐dimensional (2D) layer structure with –ABCD– stacking sequence. Furthermore, the luminescent properties of complexes 1 and 2 are investigated.  相似文献   

15.
Two new acylamide metal–organic frameworks (MOFs), based on mixed N‐ and O‐donor ligands, with 4‐connected topologies have been obtained, namely poly[[μ2N1,N4‐bis(pyridin‐3‐yl)terephthalamide]bis(μ3‐4,4′‐oxydibenzoato)dizinc(II)], [Zn2(C14H8O5)2(C18H14N4O2)]n, (1), and poly[[(μ2‐benzene‐1,4‐dicarboxylato)[μ2N4,N4′‐bis(pyridin‐3‐yl)‐[1,1′‐biphenyl]‐4,4′‐dicarboxamide]dicadmium(II)] dihydrate], {[Cd(C8H4O4)(C24H18N4O2)]·2H2O}n, (2). Complex (1) is a 4‐connected CdSO4 net with no interpenetration, where the ZnII cation is regarded as a 4‐connecting node with square geometry. Complex (2) is a 4‐connected dia net with threefold interpenetration, where the CdII cation acts as a 4‐connecting node with tetrahedral geometry. The results of thermogravimetric and luminescence analyses are described in detail.  相似文献   

16.
In this paper, the monomers 4,4′‐oxydiphthalic anhydride (ODPA), 3,3′,4,4′‐biphenyl dianhydride (BPDA), 3,4′‐oxidianiline (3,4′‐ODA), and 4,4′‐oxidianiline (4,4′‐ODA) were selected to synthesize polyimides (PI) or copolyimides (co‐PI) in N,N‐dimethyl acetamide (DMAc) by two‐step method. To control the PI molecular weight (MW), phthalic anhydride (PA) was used as the end‐capping reagent. The effect of far‐infrared radiation (FIR) on PI imidization was investigated by Fourier transform infrared spectroscopy (FTIR). Some factors affecting imidization process in FIR were discussed, including PI imidization time and temperature, molecular structure, designed number average molecular weight, crystalline, imidization procedure, film thickness, polyamide acid (PAA) solid content, and so forth. The PI imidization process in FIR will be affected by all these factors. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3621–3627, 2005  相似文献   

17.
The N‐substituted polyaniline (PANi) was synthesized by incorporation of bromine‐terminated mesogens onto the emeraldine form of polyaniline. Firsty three liquid crystalline molecules containing biphenyl units were synthesized. These mesogenic molecules are named as: 6‐bromo‐ (4‐hexyloxy‐biphenyl‐4′‐oxy) hexane (C6? C6Br), 5‐bromo‐(4‐hexyloxy‐biphenyl‐4′‐oxy) pentane (C6? C5Br), 6‐bromo‐(4‐octyloxy‐biphenyl‐4′‐oxy) hexane (C8? C6Br). Differential scanning calorimetry (DSC) in combination with polarizing optical microscopy (POM) were used to investigate the thermal properties of them. Optical microscopy showed focal conic texture characteristic of the Smectic A phase for (C6? C5Br) and (C8? C6Br). For (C6? C6? Br) smectic phase was determined. DSC experiments were also found in accord with mesophase formation. For the synthesis of N‐substituted polyaniline with these mesogen molecules, the emeraldine base polyaniline was reacted with BuLi to produce the N‐anionic polyaniline and then deprotonated polyaniline was reacted with bromine‐end mesogen to prepare mesogen‐substituted polyaniline through N‐substitution reaction. The degree of N‐substitution can be controlled by adjusting the molar feed ratio of mesogen to the number of repeat units of PANi. The microstructure and compositions of obtained polymers were characterized by FT‐IR, elemental analysis, DSC, and scanning electron microscopy (SEM). The cyclicvoltammetry show that the electroactivity of N‐substituted polyaniline is strongly dependent on the degree of N‐grafting. The solubility of mesogen‐substituted polyaniline in common organic solvents such as THF and chloroform was improved by increasing the degree of N‐substitution and also the samples are partially soluble in xylene. Liquid crystalline behavior of mesogen‐substituted polyanilines was investigated via POM, but no mesophase was observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A π‐conjugated polymer‐iridium complex containing the ligand in the main chain was synthesized by the Suzuki coupling method, and was applied to organic light‐emitting devices (OLEDs) as the emitter material. The polymer‐iridium complex showed red photoluminescence and electroluminescence with the maximum external quantum efficiency of ca. 3% by using 4,4′‐N,N′‐dicarbazole‐biphenyl and 2‐(4‐biphenylyl)‐5‐(4‐tert‐butyl‐phenyl)‐1,3,4‐oxadiazole blended into the polymer emitter layer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A novel zwitterionic surfactant monomer containing a carboxybetaine moiety and a 10 carbon aliphatic tail was synthesized and copolymerized with acrylamide to yield a water‐soluble, hydrophobically modified zwitterionic polymer [Poly(acrylamide‐co‐(3‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl)aza‐tridecyl) ammonio butanoate))]. The response of aqueous polymer solutions to the addition of various classes of surfactant was investigated and compared to that of an analogous novel polymer containing the sulfobetaine zwitterion [Poly(acrylamide‐co‐(N,N‐dimethyl‐N‐3′‐(N′‐acryloyl) aza‐tridecyl) ammonio propane sulfonate))]. It was found that the addition of sodium dodecyl sulfate (SDS) produced a pronounced maximum in viscosity, while dodecyltrimethylammoniumbromide (DTAB), N‐dodecyl‐N,N‐dimethylammonio‐1‐propanesulfonate (SB3‐12), and Triton X‐100 either had no effect, or produced a decrease in viscosity. The effect of pH on polymer–SDS interaction was also studied. Lowering pH increased the SDS–polymer interaction and significantly shifted viscosity enhancement to a higher SDS concentration.  相似文献   

20.
3,3′‐Dichloro‐N,N′‐biphthalimide (3,3′‐DCBPI), 3,4′‐dichloro‐N,N′‐biphthalimide (3,4′‐DCBPI), and 4,4′‐dichloro‐N,N′‐biphthalimide (4,4′‐DCBPI) were synthesized from 3‐ or 4‐chlorophthalic anhydrides and hydrazine in glacial acetic acid. The yield of 3,3′‐DCBPI (90%) was much higher than that of 4,4′‐DCBPI (33%) because of the better stability of the intermediate, 3‐chloro‐N‐aminophthalimide, and 3,3′‐DCBPI. A series of hydrazine‐based polyimides were prepared from isomeric DCBPIs and 4,4′‐thiobisbenzenethiol (TBBT) in N,N‐dimethylacetamide in the presence of tributylamine. Inherent viscosity of these polymers was in the range of 0.51–0.69 dL/g in 1‐methyl‐2‐pyrrolidinone (NMP) at 30 °C. These polyimides were soluble in 1,1,2,2‐terachloroethane, NMP, and phenols. The 5% weight‐loss temperatures (T5%s) of the polymers were near 450 °C in N2. Their glass‐transition temperatures (Tgs) determined by dynamic mechanical thermal analysis and differential scanning calorimetry increased according to the order of polyimides based on 4,4′‐DCBPI, 3,4′‐DCBPI, and 3,3′‐DCBPI. The hydrolytic stability of these polymers was measured under acid, basic, and neutral conditions and the results indicated that the order was 3,3′‐DCBPI/TBBT > 3,4′‐DCBPI/TBBT > 4,4′‐DCBPI/TBBT. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4933–4940, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号