首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The calculated and experimental Raman spectra of the (EMI+)TFSI ionic liquid, where EMI+ is the 1‐ethyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, have been investigated for a better understanding of the EMI+ and TFSI conformational isomerism as a function of temperature. Characteristic Raman lines of the planar (p) and non‐planar (np) EMI+ conformers are identified using the reference (EMI+)Br salt. The anion conformer of C2 symmetry is confirmed to be more stable than the cis (C1) one by 4.5 ± 0.2 kJ mol−1. At room temperature, the population of trans (C2) anions and np cations is 75 ± 2% and 87 ± 4%, respectively. Fast cooling quenches a metastable glassy phase composed of mainly C2 anion conformers and p cation conformers, whereas slow cooling gives a crystalline phase composed of C1 anion conformers and of np cation conformers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The molecular structure and conformational properties of ethyl trifluoroacetate, CF3CO2CH2CH3, were determined in the gas phase by electron diffraction, and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Experimental and theoretical methods result in two structures with Cs (anti–anti) and C1 (anti–gauche) symmetries, the former being slightly more stable than the latter. The electron‐diffraction data are best fitted with a mixture of 56% anti–gauche and 44% anti–anti conformers. The conformational preference was also studied using the total energy scheme, and the natural bond orbital scheme. Also, the infrared spectra of CF3CO2CH2CH3 are reported for the gas, liquid and solid states, as is the Raman spectrum of the liquid. The comparison of experimental averaged IR spectra of Cs and C1 conformers provides evidence for the predicted conformations in the IR spectra. Harmonic vibrational wavenumbers and scaled force fields have been calculated for both conformers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Raman spectra of 1,3‐disilabutane (SiH3CH2SiH2CH3) as a liquid were recorded at 293 K and as a solid at 78 K. In the Raman cryostat at 78 K an amorphous phase was first formed, giving a spectrum similar to that of the liquid. After annealing to 120 K, the sample crystallized and large changes occurred in the spectra since more than 20 bands present in the amorphous solid phase vanished. These spectral changes made it possible to assign Raman bands to the anti or gauche conformers with confidence. Additional Raman spectra were recorded of the liquid at 14 temperatures between 293 and 137 K. Some Raman bands changed their peak heights with temperature but were countered by changes in linewidths, and from three band pairs assigned to the anti and gauche conformers, the conformational enthalpy difference ΔconfH(gaucheanti) was found to be 0 ± 0.3 kJ mol−1 in the liquid. Infrared spectra were obtained in the vapor and in the liquid phases at ambient temperature and in the solid phases at 78 K in the range 4000–400 cm−1. The sample crystallized immediately when deposited on the CsI window at 78 K, and many bands present in the vapor and liquid disappeared. Additional infrared spectra in argon matrixes at 5 K were recorded before and after annealing to temperatures 20–34 K. Quantum chemical calculations were carried out at the HF, MP2 and B3LYP levels with a variety of basis sets. The HF and DFT calculations suggested the anti conformer as the more stable one by ca 1 kJ mol−1, while the MP2 results favored gauche by up to 0.4 kJ mol−1. The Complete Basis Set method CBS‐QB3 gave an energy difference of 0.1 kJ mol−1, with anti as the more stable one. Scaled force fields from B3LYP/cc‐pVQZ calculations gave vibrational wavenumbers and band intensities for the two conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The substituent effect on 13C NMR of the C?N in benzylidene anilines XPhCH?NPhY was investigated, in which the substituents X and Y are in p‐position or in m‐position of the two aromatic rings. The substituent effects including the inductive effects of X and Y, the conjugative effects of X and Y, and the substituent specific cross‐interaction effect were put into one model to quantify the 13C NMR chemical shift δC(C?N) of the C?N in XPhCH?NPhY. A penta‐parameter correlation equation with correlation coefficient 0.9975 and standard error 0.17 ppm was obtained for 80 samples of compounds. The result shows that the substituents X and Y have an opposite effect on the δC(C?N). The electron‐withdrawing effects of X decrease the δC(C?N); while the electron‐donating effects of X increase the δC(C?N). In contrast, the electron‐withdrawing effects of Y increase the δC(C?N); while the electron‐donating effects of Y decrease the δC(C?N). A new substituent specific cross‐interaction effect parameter Δσ2 was proposed, which indicates that the most substituent specific cross‐interaction effect exists in the pair of max electron‐withdrawing group (EWG) and max electron‐donating group (EDG) or the pair of max EDG and max EWG. Further to verify the obtained correlation equation, 15 samples of model compounds were prepared and their δC(C?N) was measured in this work. The predicted δC(C?N) values with the obtained equation are in good agreement with the measured ones for these prepared compounds, which confirmed the reliability of the obtained equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A. Lesar  T. Sajevic 《Molecular physics》2013,111(19):2301-2308
The structural and vibrational parameters of FC(O)ONO and FC(O)NO2 isomers were examined theoretically using the B3LYP/6-311+G(3df) and CCSD(T)/6-311G(d) methods. Four conformers of FC(O)ONO isomer and one FC(O)NO2 isomer are found here. Among them, the transcis and ciscis FC(O)ONO configuration are new conformers. The energetics were refined with G3//B3LYP and CBS-QB3 calculations. The trans–trans conformer of the FC(O)ONO isomer is found to be the lowest energy structure, with an estimated heat of formation of ?104.9 kcal mol?1 at 0 K as determined from CBS-QB3 theory. The next lowest structure is the cistrans FC(O)ONO lying 1.7 kcal mol?1 above the transtrans structural form. The highest energy structure is the FC(O)NO2 isomer with a predicted heat of formation of ?84.8 kcal mol?1. A comparison of the relative stability of the FCNO3 isomers with the isomers of ClCNO3 shows that the Cl analogues follow the same pattern of stability, as do the F isomers. However, the chlorine isomers are unstable relative to their fluorine analogues.  相似文献   

7.
The potential function for internal rotation in 2,3-difluoropropene has been obtained from the microwave spectrum of the gauche rotamer, the far- and mid-infrared spectra of both the gauche and cis rotamers and the absolute rotational intensity measurements of several gauche microwave transitions. It is found that the cis conformer is most stable by 145 ± 60 cm−1. Both the cis-gauche and gauche(+)-trans-gauche(−) barriers are approximately 1000 cm−1. A comparison between the potentials in 2,3-difluoropropene, propene, and several other fluoropropenes is made. The dipole moment of the gauche conformer is μa = 0.950 D, μb = 1.982 D, and μc = 1.135 D; μtotal = 2.67 D.  相似文献   

8.
Protonation reactions were studied by quantum‐chemical theoretical methods (DFT and MP2) for a series of β,β‐disubstituted vinyldiazonium cations ( 1 + – 14 + ), bearing stabilizing electron‐releasing groups (H3CO? , (H3C)2N? , H3C? , (H3C)3Si? , as well as halogens F, Cl). Taking into account the various mesomeric forms that these species can represent, protonations at Cα, at the β‐substituent, and at Nβ were considered. The energetically most favored pathway in all cases was Cα protonation, which formally corresponds to trapping of the mesomeric diazonium ylid. Based on the computed properties (optimized geometries, NPA‐charge densities, and multinuclear GIAO‐NMR chemical shifts), the resulting dications can best be viewed as carbenium/diazonium dications, in which the carbocation is further delocalized into the β‐substituent. For the α‐nitro derivative 15 , protonation of the nitro group was predicted to be the most favored reaction, while Cα‐ and Nβ‐protonation resulted in the loss of the nitronium ion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

Formic acid (HCOOH, FA) was studied experimentally, by infrared spectroscopy, in H2 and D2 matrices, with focus on the preparation and characterisation in these matrix media of structures containing the higher-energy (cis) conformer. The cis-FA monomer and the cis-FA?…?N2 complex were successfully produced by selective vibrational excitation of corresponding trans-FA based species, and vibrationally characterised. The tunneling-induced conversion of the cis-FA?…?N2 complex in the studied matrices into the corresponding trans-FA complex was also investigated, and the found tunnelling properties discussed, in particular in comparison with those observed for the spontaneous conversion of cis-FA monomer into trans-FA. This article constitutes the first report on the infrared spectrum of FA conformers and stability of cis-FA monomer in a D2 matrix, and on the structure, spectroscopy and stability of the cis-FA?…?N2 complex in both H2 and D2 matrices. Different attempts to prepare the cis-FA?…?H2O complex in the two investigated matrices are also described in detail, both from previously in situ generated cis-FA monomer followed by thermal mobilisation and by direct selective vibrational excitation of the trans-FA-H2O complex.  相似文献   

10.
Isomerization energies for hexenes (C6H12) were evaluated with ab initio (Hartree–Fock (HF), MP2, SCS‐MP2, and CCSD(T)) and several density functional approximation (DFA) methods. CCSD(T)/6‐311+G(2d,p) energies were taken as a benchmark standard. The HF method incorrectly predicts that monosubstituted alkenes are more stable than multiply‐substituted alkenes. DFAs generally predict the correct stability trends of alkenes (mono‐, < di‐, < tri‐, < tetra‐substituted alkenes) but errors in popular functionals, such as B3LYP, can be as large as errors found for alkane hydrocarbon thermochemistries. Some of the HF error is traced back to deficiencies in modeling 1,3‐geminal and 1,4‐vicinal alkyl–alkyl group interactions, called vinylbranches, and changes in C? C and C? H bond types (sp3–sp2 C? C to sp3–sp3 C? C and sp3 C? H to sp2 C? H). The latter is shown to be more significant. Comparison of CCSD(T) energies of trans‐2‐butene with 2‐methylpropylene and cis‐2‐butene suggests that geminal vinylbranches are stabilizing while vicinal vinylbranches are destabilizing. B3LYP and other DFAs have much smaller errors than HF theory due to inclusion of correlation energy that better reproduces bond type changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The rotational spectrum of isoamyl acetate, H3C–COO–(CH2)2–CH(CH3)2, has been recorded and assigned using a molecular beam Fourier transform microwave (MB-FTMW) spectrometer in the frequency range of 3–26.5?GHz. One conformer has been observed. By comparing the spectroscopic data with the quantum chemical data, it was found that the conformer observed does not have Cs symmetry. The rotational and centrifugal distortion constants were determined. The barrier to internal rotation of the acetate methyl group was found to be 93.98?cm?1. Due to the high number of the conformers, a systematic nomenclature will be presented.  相似文献   

12.
A-band resonance Raman spectra are reported for gas phase 1-iodopropane. The gas phase absorption spectrum and resonance Raman intensities were simulated using time-dependent wavepacket calculations and a simple model in order to extract the A-band short time photo-dissociation dynamics for the trans and gauche conformers of 1-iodopropane. The gas phase short time dynamics for trans and gauche are very similar to the results obtained from a reanalysis of corresponding solution phase spectra. This indicates that solvation has little effect on the A-band short time photodissociation dynamics. However, the electronic dephasing parameters for the gauche conformer increase significantly upon solvation while the trans conformer parameters are almost the same in the gas and solution phases. This suggests that the gauche conformer in the A-band excited electronic state undergoes stronger interaction with the solvent than the trans conformer to give rise to faster electronic dephasing upon solvation for the gauche conformer.  相似文献   

13.
The molecular structure of methyl trifluoroacetate (CF3C(O)OCH3) has been determined in the gas phase from electron‐diffraction data supplemented by ab initio (MP2) and DFT calculations using different basis sets. Experimental data revealed an anti conformation with a dihedral angle θ (CCOC) = 180°. Quantum mechanical calculations indicate the possible existence of two conformers, differing by a rotation about the C(O) O bond. The global minimum represents a Cs‐symmetric structure in which the CF3 group has the anti orientation with respect to the CH3 group, but there is another potential minimum, much higher in energy, representing a Cs‐symmetric structure with a cis conformation. The preference for the anti conformation was studied using the total energy scheme and the natural bond orbital (NBO) partition scheme. Additionally, the total potential energy has been deconvoluted using a six‐fold decomposition in terms of a Fourier‐type expansion, showing that the electrostatic and steric contributions are dominant in stabilizing the anti conformer. Infrared spectra of CF3C(O)OCH3 were obtained for the gaseous and liquid phases, while the Raman spectrum was recorded for the liquid phase. Harmonic vibrational frequencies and a scaled force field have been calculated, leading to a final root mean‐square deviation of 9 cm−1 when comparing experimental and calculated frequencies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Long‐range electronic substituent effects were targeted using the substituent dependence of δC(C═N), and specific cross‐interactions were explored extendedly. A wide set of N‐(4‐X–benzylidene)‐4‐(4‐Y–styryl) anilines, p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y (X = NMe2, OMe, Me, H, Cl, F, CN, or NO2; Y = NMe2, OMe, Me, H, Cl, or CN) were prepared for this study, and their 13C NMR chemical shifts δC(C═N) of C═N bonds were measured. The results show that both the inductive and resonance effects of the substituents Y on the δC(C═N) of p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y are less than those of the substituents Y in p‐X–C6H4CH═NC6H4p‐Y. Moreover, the sensitivity of the electronic character of the C═N function to electron donation/electron withdrawal by the substituent X or Y attenuates as the length of the conjugated chain is elongated. It was confirmed that the substituent cross‐interaction is an important factor influencing δC(C═N), not only when both X and Y are varied but also when either X or Y is fixed. The long‐range transmission of the specific cross‐interaction effects on δC(C═N) decreases with increasing conjugated distance between X and Y. The results of this study suggest that there is a long‐range transmission of the substituent effects in p‐X–C6H4CH═NC6H4CH═CHC6H4p‐Y. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The Raman and infrared spectra (3500–50 cm−1) of the gas, liquid or solution, and solid were recorded of 2,2,3,3,3‐pentafluoropropylamine (CF3CF2CH2NH2) and the ND2 isotopomer. Variable temperature (−55 to − 100 °C) studies of the infrared spectra (3600–400 cm−1) of samples dissolved in liquid xenon have been carried out. From these data, two of the five possible conformers have been identified and their relative stabilities obtained. The enthalpy difference was determined between the more stable Tt conformer and the less stable Tg form to be 280 ± 14 cm−1 (3.35 ± 0.17 kJ/mol). The first indicator is the NCCC dihedral angle (G = gauche or T = trans), and the second one (g = gauche or t = trans) is the relative position of the lone pair of electrons on nitrogen with respect to the β‐carbon. The percentage of the Tg conformer at ambient temperature is estimated to be 34 ± 2%. The conformational stabilities have been predicted from ab initio calculations utilizing several different basis sets up to aug‐cc‐pVTZ for both MP2(full) and density functional theory calculations by the B3LYP method. Vibrational assignments have been provided for most of the observed bands for both isotopomers, supported by MP2(full)/6‐31G(d) ab initio calculations to predict the harmonic force fields, wavenumbers, infrared intensities, Raman activities, and depolarization ratios for both conformers. Estimated r0 structural parameters were obtained from adjusted MP2(full)/6‐311 + G(d,p) calculations. The results are discussed and compared with the corresponding properties of some related molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
An experimental study has been performed shedding light on the conformational energies of the asymmetric ether n-butyl ethyl ether. Rotational spectroscopy between 7.8 GHz and 16.2 GHz has identified two conformers of n-butyl ethyl ether, C4H9OC2H5. In these experiments spectra were observed as the target compound participated in an argon expansion from high to low pressure causing molecular rotational temperatures to be below 4 K. For one conformer, 95 pure rotational transitions have been recorded, for the second conformer, 20 pure rotational transitions were recorded. Rotational constants and centrifugal distortion constants are presented for both butyl ethyl ether conformers. The structures of both conformers have been identified by exploring the multi-dimensional molecular potential energy surface using ab initio calculations. From the numerous low energy conformers identified using ab initio methods, the three lowest conformers were pursued at increasingly higher levels of theory, i.e. complete basis set extrapolations, coupled cluster methods, and also taking into consideration zero point vibrational energies. The two conformers observed experimentally are only revealed to be the two lowest energy conformers when high levels of quantum chemical methodologies are employed.  相似文献   

17.
Thiohydroxylamine has been identified as one of the reaction products from the discharge reaction of N2 + H2S. Both cis and trans conformers have been observed. The rotational spectra have been studied from 56 to 170 GHz for the normal species and several deuterated isotopic species of each conformer. The electric dipole moments of both conformers have been determined. A number of the transitions of the cis conformer exhibit splittings due to the nuclear quadrupole moment of the 14N nucleus. A least squares fit of the frequency splittings have led to an analysis of the eQq values. Ab initio calculations using a 4-31G basis set both with and without polarization functions have been carried out to aid in the analysis and to provide a final structural comparison with the microwave results.  相似文献   

18.
The rotational isomerism of model phosphorus‐containing compounds was evaluated by using theoretical methodologies. The trans rotamer of chloromethylphosphonic acid dichloride ( 1 ) was found to be the prevailing form in the gas phase and in non‐polar solvents, with an inverse behaviour from chloroform solution. Although the use of direct spin–spin coupling constants (SSCCs) do not apply for the quantitative determination of conformers in 1 , due to the small dependence of J with conformation, the observed measurements and calculated individual couplings suggest that the gauche conformer is progressively stabilized with increasing the solvent polarity. In addition, theoretical calculations at the CBS‐Q level for the corresponding phosphine of 1 (compound 2 ) showed the gauche rotamer as the prevailing one in the isolated state. Natural Bond Orbital (NBO) analysis indicated that steric and electrostatic effects rule the rotational isomerism of 1 , while the anomeric effect nPσ*CCl also plays an important role on the conformational equilibrium of 2 . Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The pure rotational spectra of the two lowest energy conformers of 1,1,2,2-tetrafluoro-3-iodopropane have been investigated between the frequency limits of 7.5 and 16 GHz using chirped pulse Fourier transform microwave spectroscopy. Quantum chemical calculations have been performed to aid the spectral analyses. For the transtrans conformer, which is calculated to be the lowest in energy, a total of 135 transitions were recorded. For the gauchegauche conformer a total of 286 transitions were recorded. In both cases the complete iodine nuclear quadrupole coupling tensor has been determined.  相似文献   

20.
Comparison of 13C NMR of C = N bond chemical shifts δC(C = N) in substituted N‐(phenyl‐ethylene)‐anilines XArC(Me) = NArY (XPEAYs) with that in substituted N‐(benzylidene)‐anilines XArCH = NArY (XBAYs) was carried out. The δC(C = N) of 61 samples of XPEAYs were measured, and the substituent effect on their δC(C = N) were investigated. The results show the factors affecting the δC(C = N) of XPEAYs are quite different from that of XBAYs. A penta‐parameter correlation equation was obtained for the 61 compounds, which has correlation coefficient 0.9922 and standard error 0.12 ppm. The result indicates that, in XPEAYs, the inductive effects of substituents X and Y are major factors affecting the δC(C = N), while the conjugative effect of them have very little effect on the δC(C = N) and can be ignored. The substituent‐specific cross‐interaction effects between X and Y and between Me of C = N bond and substituent Y are important factors affecting the δC(C = N). Also, the excited‐state substituent parameter of substitute Y has certain contribution to the δC(C = N). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号