首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a new approach to express SIMS depth profiling on a TOF.SIMS‐5 time‐of‐flight mass spectrometer. The approach is based on the instrument capability to independently perform raster scans of sputter and probe ion beams. The probed area can be much smaller than the diameter of a sputter ion beam, like in the AES depth profiling method. This circumstance alleviates limitations on the sputter beam–raster size relation, which are critical in other types of SIMS, and enables analysis on a curved‐bottomed sputter crater. By considerably reducing the raster size, it is possible to increase the depth profiling speed by an order of magnitude without radically degrading the depth resolution. A technique is proposed for successive improvement of depth resolution through profile recovery with account for the developing curvature of the sputtered crater bottom in the probed area. Experimental study of the crater bottom form resulted in implementing a method to include contribution of the instrumental artifacts in a nonstationary depth resolution function within the Hofmann's mixing–roughness–information depth model. The real‐structure experiment has shown that the analysis technique combining reduction of a raster size with a successive nonstationary recovery ensures high speed of profiling at ~100 µm/h while maintaining the depth resolution of about 30 nm at a 5 µm depth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Secondary ion mass spectrometry studies have been made of the removal of the degraded layer formed on polymeric materials when cleaning focused ion beam (FIB)-sectioned samples comprising both organic and inorganic materials with a 30-keV Ga+ FIB. The degraded layer requires a higher-than-expected Ar gas cluster ion beam (GCIB) dose for its removal, and it is shown that this arises from a significant reduction in the layer sputtering yield compared with that for the undamaged polymer. Stopping and Range of Ions in Matter calculations for many FIB angles of incidence on flat polymer surfaces show the depth of the damage and of the implantation of the Ga+ ions, and these are compared with the measured depth profiles for Ga+-implanted flat polymer surfaces at several angles of incidence using an Ar+ GCIB. The Stopping and Range of Ions in Matter depth and the measured dose give the sputtering yield volume for this damaged and Ga+-implanted layer. These, and literature yield values for Ga+ damaged layers, are combined on a plot showing how the changing sputtering yield is related to the implanted Ga density for several polymer materials. This plot contains data from both the model flat poly(styrene) surfaces and FIB-milled sections showing that these 2 surfaces have the same yield reduction. The results show that the damaged and Ga+-implanted layer's sputtering rate, after FIB sectioning, is 50 to 100 times lower than for undamaged polymers and that it is this reduction in sputtering rate, rather than any development of microtopography, that causes the high Ar+ GCIB dose required for cleaning these organic surfaces.  相似文献   

3.
Lin WC  Liu CP  Kuo CH  Chang HY  Chang CJ  Hsieh TH  Lee SH  You YW  Kao WL  Yen GJ  Huang CC  Shyue JJ 《The Analyst》2011,136(5):941-946
Cluster ion sputtering has been proven to be an effective technique for depth profiling of organic materials. In particular, C(60)(+) ion beams are widely used to profile soft matter. The limitation of carbon deposition associated with C(60)(+) sputtering can be alleviated by concurrently using a low-energy Ar(+) beam. In this work, the role of this auxiliary atomic ion beam was examined by using an apparatus that could analyze the sputtered materials and the remaining target simultaneously using secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectrometry (XPS), respectively. It was found that the auxiliary 0.2 kV Ar(+) stream was capable of slowly removing the carbon deposition and suppresses the carbon from implantation. As a result, a more steady sputtering condition was achieved more quickly with co-sputtering than by using C(60)(+) alone. Additionally, the Ar(+) beam was found to interfere with the C(60)(+) beam and may lower the overall sputtering rate and secondary ion intensity in some cases. Therefore, the current of this auxiliary ion beam needs to be carefully optimized for successful depth profiling.  相似文献   

4.
The hydrogen (H)/sodium (Na) interface is of great interest in glass corrosion research. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the few techniques that can provide nanoscale H and Na imaging simultaneously. However, the optimized condition for ToF-SIMS imaging of H in glass is still unclear. In H depth profiling using ToF-SIMS, H background control is a key, in which an analysis ion beam and a sputtering ion beam work together in an interlaced mode to minimize it. Therefore, it is of great interest to determine if an auxiliary sputtering ion beam is also necessary to control H background in ToF-SIMS imaging of H. In this study, H imaging with and without auxiliary sputtering beams (Cs+, O2+, and Arn+) was compared on a corroded international simple glass (ISG). It was surprising that the H/Na interface could be directly imaged using positive ion imaging without any auxiliary sputtering ion beam under a vacuum of 2 to 3 × 10−8 mbar. The H+ background was about 5% atomic percent on the pristine ISG glass, which was significantly lower than the H concentration in the alteration layer (~15%). Moreover, positive ion imaging could show distributions of other interesting species simultaneously, providing more comprehensive information of the glass corrosion. If an auxiliary O2+ sputtering ion beam was used, the H+ background could be reduced but still higher than that in the depth profiling. Besides, this condition could cause significant loss of signal intensities due to strong surface charging.  相似文献   

5.
The size, shape, and spatial distribution of active pharmaceutical ingredient (API) are important physical characteristics of drug delivery systems that can affect the performance, stability, appearance, and even bulk properties of the end product. This study explores the feasibility of using time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the 3D characterization of API particles in two commercially available oral dissolvable drug delivery films. It was found that ToF-SIMS imaging with argon gas cluster ion beam (GCIB) sputtering allowed production of 3D chemical maps that could be utilized to obtain size distributions of buprenorphine particles whose effective diameters ranged from approximately 6 μm to 41 μm, with shapes that were generally spherical with a few nonspherical structures. The particles were heterogeneously distributed both laterally and as a function of depth in the film. In addition, ToF-SIMS was able to differentiate between different oral drug delivery films based on differences in the spatial distribution of buprenorphine; in one case, the particles were distributed throughout the depth of the film, whereas the particles in the other case were localized close to the surface. Preliminary studies suggest that ToF-SIMS with argon GCIB sputtering may also allow us to provide a very rough estimate of the concentration of the APIs (factors of 2 to 4), namely buprenorphine and naloxone, at pharmacologically relevant concentrations inside organic drug delivery systems with a thickness of hundreds of micrometers.  相似文献   

6.
Argon cluster ions have enabled molecular depth profiling to unprecedented depths, with minimal loss of chemical information or changes in sputter rate. However, depth profiling of ultrathick films (>100 μm) using a commercial ion source oriented at 45° to the surface causes the crater bottom to shrink in size because of a combination of the crater wall angle, sputter rate differences along the trailing-edge crater wall, and undercutting on the leading-edge. The shrinking of the crater bottom has 2 immediate effects on dual-beam depth profiling: first is that the centering of the analysis beam inside the sputter crater will no longer ensure the best quality depth profile because the location of the flat crater bottom progressively shifts toward the leading-edge and second, the shifting of the crater bottom enforces a maximum thickness of the film that could be depth profiled. Experiments demonstrate that a time-of-flight secondary ion mass spectrometry instrument equipped with a 20 keV argon cluster source is limited to depth profiling a 180 μm-thick film when a 500 μm sputter raster is used and a 100 μm square crater bottom is to be left for analysis. In addition, depth profiling of a multilayer film revealed that the depth resolution degrades on trailing-edge side of the crater bottom presumably because of the redeposition of the sputtered flux from the crater wall onto the crater bottom.  相似文献   

7.
The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on “Sputtering and Ion Emission by Cluster Ion Beams”, recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: “under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface”. It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance – for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. © Crown copyright 2008. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

8.
Alternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry. Both materials have identical sputtering yields, and we show that organic delta layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling. We demonstrate, using a C(60) ion source, that the sputtering yield, S, diminishes with ion dose and that the depth resolution also degrades. By comparison with atomic force microscopy data for films of pure Irganox1010, we show that the degradation in depth resolution is caused by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Fragments characteristic of highly damaged material have intensity proportional to S, and those fragments with minimal molecular rearrangment exhibit intensities proportional to S(2). We demonstrate quantitative analysis of the amount of substance in buried layers of a few nanometer thickness with an accuracy of approximately 10%. Organic delta layers are valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.  相似文献   

9.
Deposition of ultra‐thin layers under computer control is a frequent requirement in studies of novel sensors, materials screening, heterogeneous catalysis, the probing of band offsets near semiconductor junctions and many other applications. Often large‐area samples are produced by magnetron sputtering from multiple targets or by atomic layer deposition (ALD). Samples can then be transferred to an analytical chamber for checking by X‐ray photoelectron spectroscopy (XPS) or other surface‐sensitive spectroscopies. The ‘wafer‐scale’ nature of these tools is often greater than is required in combinatorial studies, where a few square centimetres or even millimetres of sample is sufficient for each composition to be tested. The large size leads to increased capital cost, problems of registration as samples are transferred between deposition and analysis, and often makes the use of precious metals as sputter targets prohibitively expensive. Instead we have modified a commercial sample block designed to perform angle‐resolved XPS in a commercial XPS instrument. This now allows ion‐beam sputter deposition from up to six different targets under complete computer control. Ion beam deposition is an attractive technology for depositing ultra‐thin layers of great purity under ultra‐high vacuum conditions, but is generally a very expensive technology. Our new sample block allows ion beam sputtering using the ion gun normally used for sputter depth‐profiling of samples, greatly reducing the cost and allowing deposition to be done (and checked by XPS) in situ in a single instrument. Precious metals are deposited cheaply and efficiently by ion‐beam sputtering from thin metal foils. Samples can then be removed, studied and exposed to reactants or surface treatments before being returned to the XPS to examine and quantify the effects. Copyright © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.  相似文献   

10.
An Ar Gas Cluster Ion Beam (GCIB) has been shown to remove previous Ar+ ion beam‐induced surface damage to a bulk polyimide (PI) film. After removal of the damaged layer with a GCIB sputter source, XPS measurements show minor changes to the carbon, nitrogen and oxygen atomic concentrations relative to the original elemental bulk concentrations. The GCIB sputter depth profiles showed that there is a linear relationship between the Ar+ ion beam voltage within the range from 0.5 to 4.0 keV and the dose of argon cluster ions required to remove the damaged layer. The rate of recovery of the original PI atomic composition as a function of GCIB sputtering is similar for carbon, nitrogen and oxygen, indicating that there was no preferential sputtering for these elements. The XPS chemical state analysis of the N 1s spectra after GCIB sputtering revealed a 17% damage ratio of altered nitrogen chemical state species. Further optimization of the GCIB sputtering conditions should lead to lower nitrogen damage ratios with the elemental concentrations closer to those of bulk PI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We present the results of a VAMAS (Versailles project on Advanced Materials and Standards) interlaboratory study on organic depth profiling, in which twenty laboratories submitted data from a multilayer organic reference material. Individual layers were identified using a range of different sputtering species (C60n+, Cs+, SF5+ and Xe+), but in this study only the C60n+ ions were able to provide truly ‘molecular’ depth profiles from the reference samples. The repeatability of profiles carried out on three separate days by participants was shown to be excellent, with a number of laboratories obtaining better than 5% RSD (relative standard deviation) in depth resolution and sputtering yield, and better than 10% RSD in relative secondary ion intensities. Comparability between laboratories was also good in terms of depth resolution and sputtering yield, allowing useful relationships to be found between ion energy, sputtering yield and depth resolution. The study has shown that organic depth profiling results can, with care, be compared on a day‐to‐day basis and between laboratories. The study has also validated three approaches that significantly improve the quality of organic depth profiling: sample cooling, sample rotation and grazing angles of ion incidence. © Crown copyright 2010.  相似文献   

12.
Progress in high resolution Auger electron spectroscopy (HR-AES or scanning Auger microscopy, SAM) during the past few years is characterized by the use of efficient field emission electron sources, parallel detection capabilities and improved data acquisition, storage and processing, thus enhancing spatial resolution (to about 10 nm), signal to noise figure and quantification of elements in different chemical bonding states, e.g. by routinely using factor analysis. Optimized ion sputtering facilities, particularly sample rotation, enable depth profiling with high, depth independent resolution. The basic features of SAM are discussed with respect to EPMA (electron probe micro-analysis), emphasizing fundamental limitations and future developments.  相似文献   

13.
X‐ray photoelectron spectroscopy (XPS) was used in conjunction with gas cluster ion source etching to analyze polystyrene and polyvinylpyrrolidone multilayer samples, total thickness ~15 μm, to establish optimal conditions for depth profiles over many μm in depth. Using standard conditions, these samples demonstrate a reduction in depth resolution and sputtering yield, which is shown to be partly due to X‐ray–induced damage and partly due to roughening of the sputtered surface. By limiting the X‐ray exposure, it was possible to retain depth resolution to a depth of approximately 5 μm; to obtain useful depth profiles beyond this depth, it was necessary to use sample rotation. The use of optimized conditions allowed the chemical integrity of the polymer layers to remain intact during the etching process with relatively sharp interfaces over the full depth of the films. Both the elemental intensities in XPS and the line shape of the C 1s peak could be used to determine the differences in chemical structure of the films in the depth profile. Detailed analysis suggests that a “stepwise” rotation scheme can maintain depth resolution better than continuous rotation during sputtering.  相似文献   

14.
The application of ion beam sputtering in combination with glancing-incidence X-ray fluorescence spectrometry for high-resolution concentration depth profiling is presented. Two new techniques are described: first, in the “bevel-etching technique”, the sample depth profile is uncovered on the sample surface either by sputter etching with a gradient of the ion beam intensity or by varying the sputtering time by moving a shutter in front of the sample; second, in the “deposition technique”, samples are etched uniformly and the sputtered material is deposited on a moving substrate. The bevelled sample and also the material deposited on the substrate are characterized (laterally resolved) by glancing incidence X-ray fluorescence spectrometry. The apparatus and techniques are described in detail. Typical experiments showing the advantages of and problems with the two techniques are discussed. The achievable depth resolutions, 1.5 nm with the bevel-etching technique and 1.4 nm with the deposition technique, are comparable with the best results from other depth profiling methods.  相似文献   

15.
The International Standard ISO 22415 provides methods to measure sputtering yield volumes of organic test materials using argon cluster ions. The test materials should consist of thin films of known thicknesses between 50 and 1000 nm. The format of the test materials, the measurement of sputtering ion dose, sputtered depth, and reporting requirements for sputtering yield volumes are described.  相似文献   

16.
Dynamic secondary ion mass spectrometry (D-SIMS) analysis of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) was conducted using a quadrupole mass analyzer with various combinations of continuous C(60)(+) and Ar(+) ion sputtering. Individually, the Ar(+) beam failed to generate fragments above m/z 200, and the C(60)(+) beam generated molecular fragments of m/z ~1000. By combining the two beams, the auxiliary Ar(+) beam, which is proposed to suppress carbon deposition due to C(60)(+) bombardment and/or remove graphitized polymer, the sputtering range of the C(60)(+) beam is extended. Another advantage of this technique is that the high sputtering rate and associated high molecular ion intensity of the C(60)(+) beam generate adequate high-mass fragments that mask the damage from the Ar(+) beam. As a result, fragments at m/z ~900 can be clearly observed. As a depth-profiling tool, the single C(60)(+) beam cannot reach a steady state for either PET or PMMA at high ion fluence, and the intensity of the molecular fragments produced by the beam decreases with increasing C(60)(+) fluence. As a result, the single C(60)(+) beam is suitable for profiling surface layers with limited thickness. With C(60)(+)-Ar(+) co-sputtering, although the initial drop in intensity is more significant than with single C(60)(+) ionization because of the damage introduced by the auxiliary Ar(+), the intensity levels indicate that a more steady-state process can be achieved. In addition, the secondary ion intensity at high fluence is higher with co-sputtering. As a result, the sputtered depth is enhanced with co-sputtering and the technique is suitable for profiling thick layers. Furthermore, co-sputtering yields a smoother surface than single C(60)(+) sputtering.  相似文献   

17.
The focused ion beam (FIB) tool has been successfully used as both a stand alone analytical instrument and a means to prepare specimens for subsequent analysis by SEM, TEM, SIMS, XPS, and AUGER. In this work, special emphasis is given to TEM specimen preparation by the FIB lift-out technique. The fundamental ion/solid interactions that govern the FIB milling process are examined and discussed with respect to the preparation of electron transparent membranes. TRIM, a Monte Carlo simulation code, is used to physically model variables that influence FIB sputtering behavior. The results of such computer generated models are compared with empirical observations in a number of materials processed with an FEI 611 FIB workstation. The roles of incident ion attack angle, beam current, trench geometry, raster pattern, and target-material-dependent removal rates are considered. These interrelationships are used to explain observed phenomena and predict expected milling behaviors, thus increasing the potential for the FIB to be used more efficiently with reproducible results.  相似文献   

18.
19.
To examine precise depth profiles at the interface of SiO2/SiC, a high resolution that can detect slight discrepancies in the distribution is needed. In this study, an experimental method to achieve a high resolution of less than 1 nm was developed by using dual-beam time-of-flight secondary ion mass spectrometry (TOF-SIMS). The analysis was preceded by the following three steps: (1) determination of the optimal analytical conditions of the analysis beam (Bi+) and sputtering beam (Cs+), (2) verification of the etching methods to thin the SiO2 layer, and (3) confirmation of the benefits of the low-energy sputtering beam directed toward SiO2/SiC samples. By using the secondary ion intensity peak-to-valley ratio of BN and BO of a sample with delta-doped boron multilayers, the appropriate Bi+/Cs+ condition for a high depth resolution was determined for each energy level of the sputtering beam. Upon verification of the etching methods to thin the SiO2 layer, slight discrepancies were found between samples that were obtained with different etching methods. The difference in the roughness values of the etched surfaces was proactively utilized for the performance confirmation of the low-energy sputtering beam by means of precise observation of the profiles at the SiO2/SiC interface. The use of a Cs beam with a low energy between 0.25 and 0.5 keV enabled the detection of slight discrepancies in the roughness of less than 1 nm between samples. The aforementioned method has the potential to accurately detect discrepancies in the intrinsic distribution at the SiO2/SiC interface among samples.  相似文献   

20.
We have performed secondary ion mass spectrometry depth profiling analysis of III–V based hetero‐structures at different target temperatures and found that both the surface segregation and surface roughness caused by ion sputtering can be radically reduced if the sample temperature is lowered to ?150 °C. The depth profiling of ‘frozen’ samples can be a good alternative to sample rotation and oxygen flooding used for ultra‐low‐energy depth profiling of compound semiconductors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号