首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four novel helical poly(phenylacetylene)s with amino‐functionalized cinchona alkaloid pendant groups connecting to the phenyl rings through a sulfonamide linkage were synthesized by the polymerization of the corresponding phenylacetylene monomers using Rh+(2,5‐norbornadiene)[(η6‐C6H5)B?(C6H5)3] (Rh(nbd)BPh4) as the catalyst. The optically active sulfonamide‐linked polymers adopted a helical conformation with an excess of one‐handedness as supported by the appearance of the induced Cotton effects in the main‐chain chromophore regions, and efficiently catalyzed the enantioselective methanolytic desymmetrization of a cyclic anhydride and aza‐Michael addition of aniline to chalcone, thereby producing the corresponding optically active products up to 86% enantiomeric excess. However, their enantioselectivities from the methanolytic desymmetrization were slightly lower than those catalyzed by the corresponding cinchona alkaloid‐bound monomers. On the other hand, during the asymmetric aza‐Michael addition, a unique enhancement of the enantioselectivity was observed for several sulfonamide‐linked helical polymers, and thus affording a remarkably higher enantioselectivity compared to those of the corresponding monomers and nonhelical polymers bearing the identical cinchona alkaloid residues. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2869–2879  相似文献   

2.
Novel optically active ethynyl monomers were synthesized from L ‐valine and N‐methyl‐L ‐valine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights over 200,000 in good yields. The CD and UV‐vis spectra of the polymers indicated that they took helical structures with predominantly one‐handed screw sense in solution. The polymers served as catalysts of asymmetric reduction of aromatic ketimines to afford optically active amines in moderate yields. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4971–4981, 2009  相似文献   

3.
Novel poly(biphenylylacetylene) derivatives carrying different types of pyridine N‐oxide units with a bulky or less‐bulky substituent at a different position as the functional pendant groups (poly‐ 2a and poly‐ 2b ) were synthesized by the rhodium‐catalyzed polymerization of the corresponding monomers. The influence of the steric environment around the catalytically active pyridine N‐oxide sites on the helicity induction and its static memory as well as the asymmetric catalytic activities of the resulting helical polymers with a macromolecular helicity memory was investigated. The polyacetylenes formed an excess one‐handed helical conformation upon noncovalent interactions with optically active alcohols and the induced macromolecular helicities of the polyacetylenes were efficiently memorized after the removal of the chiral inducers. Poly‐ 2b with the macromolecular helicity memory showed an enantioselectivity for the catalytic asymmetric allylation of benzaldehydes, producing optically active allyl alcohols, although their enantioselectivities were low. On the other hand, poly‐ 2a exhibited a negligible catalytic activity probably due to the bulky substituent at the o‐position of the pyridine N‐oxide residues, while poly‐ 2a underwent a unique helix‐inversion with the increasing concentration of chiral alcohols and the opposite helicity of poly‐ 2a was further successfully memorized. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2481–2490  相似文献   

4.
The syntheses of optically active polymers having helical conformation from bulky methacrylates are reviewed focusing on selected topics. The monomers include triphenylmethyl methacrylate and its analogues. Asymmetric anionic polymerization of the monomers gives isotactic, optically active polymers having a helical structure with excess helicity. The isotactic content and the extent of helical‐sense excess depend on the monomer structure and the reaction conditions. In the case of methacrylates, completely isotactic and single‐handed helical polymers can be produced by asymmetric anionic polymerization (helix‐sense‐selective polymerization). Asymmetric radical polymerization is also possible for this class of monomer. Some of the helical polymers show chiral recognition ability toward a wide range of racemic compounds. Polymers having main‐chain configurational chirality are also discussed.  相似文献   

5.
Optically active poly(m‐phenylene)s substituted with chiral oxazoline derivatives have been synthesized by the nickel‐catalyzed Yamamoto coupling reaction of optically active (S)‐4‐benzyl‐2‐(3,5‐dihalidephenyl)oxazoline derivatives (X = Br or I). The structures and chiroptical properties of the polymers were characterized by spectroscopic methods and thermal gravimetric analyses. The polymers showed higher absolute optical specific rotation values than their corresponding monomer, and showed a Cotton effect at transition region of conjugated main chain. The optical activities of the polymers should be attributed to the higher order structure such as helical conformations. Moreover, the helical conformation could be induced by addition of metal salts into polymer solutions. The polymers showed good thermal stabilities, which was attributable to the oxazoline side chains. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
Novel polyphenylacetylene and polystyrene derivatives carrying L ‐proline moieties at the side chains were synthesized by the rhodium‐catalyzed and radical polymerizations of the corresponding monomers. The polyphenylacetylene derivatives showed Cotton effects at the absorption region of the main chain, indicating that the polymers adopt helical conformations with predominantly one‐handed screw sense. The polymers catalyzed the asymmetric aldol reactions of acetone with aromatic aldehydes, and cyclohexanone with p‐nitrobenzaldehyde. The enantioselectivities largely depended on the reaction conditions. In the asymmetric aldol reaction of acetone with aromatic aldehydes, the R‐enantiomeric products were predominantly obtained except the cases with the polymer catalyst in CHCl3. The ee of the products became higher as the reaction temperature was decreased. The polymeric catalysts were recoverable from the reaction mixture by filtration, and the recovered ones catalyzed the asymmetric aldol reaction of acetone with p‐nitrobenzaldehyde without decreasing the product yield and ee. The ee was improved using the copolymers of L ‐proline‐based and nonchiral monomers as catalysts. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
This review mainly describes the asymmetric synthesis of optically active polymers with helical conformation. Bulky methacrylates such as triphenylmethyl methacrylate and 1-phenyldibenzosuberyl methacrylate give one-handed helical and optically active polymers with almost perfectly isotactic main chain conformation by polymerization with chiral anionic initiators. The radical polymerization and copolymerization of these monomers under chiral conditions also afford optically active polymers with prevailing one-handed helicity. N, N-Disubstituted acrylamides also give optically active, helical polymers in the asymmetric anionic polymerization. Optically active polyisocyanates with a prevailing one-handed helical structure have been prepared in the copolymerization of an achiral isocyanate with a small amount of an optically active isocyanate and also in the polymerization of alkyl and aromatic isocyanates with optically active lithium alkoxide or amide compounds. The existence of a stable helical structure for polychloral has been successfully proved with the helical oligomers of chloral. One-handed helical polyisocyanides have been prepared by helix-sense-selective polymerization of bulky isocyanides and also by the cyclopolymerization of a 1, 2-diisocyanobenzene derivative with the Pd complex of a one-handed helical oligomer.  相似文献   

8.
The preparation of optically active atropoisomeric polymers which present chiral backbones, thanks to induction during their synthesis from stereogenic centers, located far away from the skeleton is possible, thanks principally to semirigid conformations of the promesogenic spacers between them. The result is that chiral “information” can be passed as far as 21 Å from the asymmetric center to the carbon atom that forms the polymeric chain in poly(isocyanide)s. The sense of chiral induction in these conformationally rigid polymers parallels the helical sense of the cholesteric phases, as well as to the helical senses of chiral smectic C phases, induced by the monomers in nematic and smectic C phases, respectively. All these phenomena obey the odd–even rules proposed for chiral sense changes in these liquid crystalline phases. Noncovalent interactions play an important part in the induction process, in which steric arguments can be used to justify the inductions observed. The methodology can be used to prepare macromolecules, which display switching behavior upon thermal or electrochemical stimulus. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3161–3174, 2006  相似文献   

9.
Since few examples of 10,11‐didehydrogenated (3‐ethynyl) cinchona alkaloids have been utilized as organocatalysts in asymmetric reaction, we synthesized 10,11‐didehydrogenated cinchonidine. The 3‐vinyl group of cinchonidine was transformed into a 3‐ethynyl functionality. Based on the resulting 10,11‐didehydrogenated cinchonidine, the corresponding quaternary ammonium salt and its dimers were prepared. The ion‐exchange reaction between the quaternary ammonium salt and sodium sulfonate produced the quaternary ammonium sulfonate as a stable ionic compound. Chiral ionic polymers were then synthesized by the ion‐exchange polymerization of the 10,11‐didehydrogenated cinchonidinium salt dimer and a disulfonate. The chiral ionic polymers were found to be capable of efficiently catalyzing the asymmetric alkylation of N‐(diphenylmethylene)glycine tert‐butyl ester. The enantioselectivities obtained with the polymeric catalysts were higher than those obtained with the corresponding monomeric catalyst. Dimers of 10,11‐didehydrogenated cinchonidinium salts were prepared. Treatment of the dimer with disodium disulfonate gave the chiral ionic polymers, which showed high catalytic activity in asymmetric benzylation of N‐(diphenylmethylen)glycine tert‐butyl ester. The polymeric catalysts were reused several times without the loss of catalytic activity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 621–627  相似文献   

10.
Two novel phenylacetylene derivatives bearing diethylaminomethyl groups at the meta position on phenyl groups [3‐(N,N‐diethylaminomethyl)phenyl]acetylene ( 1 ) and [3,5‐bis(N,N‐diethylaminomethyl)phenyl]acetylene ( 2 ) were synthesized and polymerized with [Rh(nbd)Cl]2 (nbd: norbornadiene). Both monomers gave highly cis–transoidal stereoregular polymers that exhibited an induced circular dichroism (ICD) in the UV–visible region, probably because of a prevailing one‐handed helical conformation upon complexation with optically active carboxylic acids such as mandelic acid and lactic acid. The sign of the Cotton effects reflected the absolute configuration of the chiral acids. Therefore, these polymers can be used as a novel probe for determining the configuration of chiral acids. The polymers were stable in the presence of chiral acids in solution. The poly‐ 1 complexed with chiral acids exhibited a split‐type ICD, whereas the poly‐ 2 complexed with chiral acids showed a different, non‐split‐type ICD. The ICD pattern of the poly‐ 1 /chiral acids complexes dramatically changed with an increase in the concentration of the chiral acids, thus showing a non‐split‐type ICD similar to those of the poly‐ 2 /chiral acid complexes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3180–3189, 2001  相似文献   

11.
In this communication, we report an asymmetric Friedel-Crafts reaction of indoles with imines catalyzed by a bifunctional cinchona alkaloid catalyst. This is the first efficient organocatalytic asymmetric Friedel-Crafts reaction of indoles with imines. This reaction is operationally simple and, unprecedentedly, affords high enantioselectivity for a wide range of indoles and both aryl and alkyl imines. This establishes a direct, convergent, and versatile approach to optically active 3-indolyl methanamines, a structural motif embedded in numerous indole alkaloids and synthetic indole derivatives.  相似文献   

12.
Stereoregular cis‐transoidal poly(phenylacetylene) bearing a phosphonic acid monoethyl ester as the pendant group (poly‐ 1 ‐H) was found to form a preferred‐handed helix upon complexation with various optically active pyrrolidines and piperazines in dilute dimethyl sulfoxide and water, and the complexes exhibited characteristic induced circular dichroisms (ICDs) in the UV‐vis region of the polymer backbone. The Cotton effect signs in water reflect the absolute configuration of the pyrrolidines. The sodium salt of poly‐ 1 ‐H (poly‐ 1 ‐Na) and poly‐ 1 ‐H in the presence of optically active amines formed lyotropic nematic and cholesteric liquid crystalline phases in concentrated water solutions, respectively, indicating the rigid‐rod characteristic of the polymer main chain regardless of the lack of a single‐handed helix, as evidenced by the long persistence length of about 18 nm before and after the preferred‐handed helicity induction in the polymer. X‐ray diffraction of the oriented films of the nematic and cholesteric liquid crystalline polymers exhibited almost the same diffraction pattern, suggesting that both polymers have the same helical structure; dynamically racemic and one‐handed helices, respectively. On the basis of the X‐ray analysis, a possible helical structure of poly‐ 1 is proposed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1383–1390, 2010  相似文献   

13.
Novel, optically active, stereoregular poly(phenylacetylene)s bearing the bulky fullerene as the pendant were synthesized by copolymerization of an achiral phenylacetylene bearing a [60]fullerene unit with optically active phenylacetylene components in the presence of a rhodium catalyst. The C60-bound phenylacetylene was prepared by treatment of C60 with N-(4-ethynylbenzyl)glycine in a Prato reaction. The obtained copolymers exhibited induced circular dichroism (ICD) in solution both in the main-chain region and in the achiral fullerene chromophoric region, although their ICD intensities were highly dependent on the structures of the optically active phenylacetylenes and the solution temperature. These results indicate that the optically active copolymers form one-handed helical structures and that the pendant achiral fullerene groups are arranged in helical arrays with a predominant screw sense along the polymer backbone. The structures and morphology of the copolymers on solid substrates were also investigated by atomic force microscopy.  相似文献   

14.
<正>In this study,six thiourea derivatives of cinchona alkaloids with 9-nat or 9-epi-configuration were synthesized.After characterized the structures,we adopted them to the asymmetric"interrupted"Feist-Benary(IFB) reaction ofα-haloketones with β-dicarbonyl compounds,to give optically active dihydrofurans.Various thiourea derivatives as organocatalysts were examined.The corresponding chiral hydroxyl dihydrofurans have been obtained in excellent yields and moderate ees.To the acyclic substrate,we obtained exciting and promising result.  相似文献   

15.
Diacetylene monomers with respective lengths of the oxyethylene chains were cyclopolymerized with a rhodium catalyst to produce novel poly(phenylacetylene)s bearing a different cavity size of the chiral crown ether in the repeating units ( 2a – c ). In the circular dichroism spectra of the resulting polymers, characteristic Cotton effects were observed in the range from 350 to 500 nm corresponding to the absorption of the conjugated polymer backbone, indicating that the polymers possessed a helical structure with an excess single screw sense induced by the covalently bonded binaphthyl units. The host–guest complexation of 2a – c with achiral guests produced a chiroptical change based on the fluctuation in the main chain conformation. The behavior of the complexation‐induced chiroptical change was essentially dictated by the cavity size of the binaphthocrown ether units. Additionally, a chirality‐responsive helicity change was observed in the case of the complexation of 2a – c with chiral guests, which also depended on the crown ether size. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1197–1206, 2010  相似文献   

16.
Asymmetric anionic homopolymerizations of achiral N‐substituted maleimides (RMI) were performed with lithium 4‐alkyl‐2,2‐dialkyloxazolidinylamide. All obtained polymers were optically active, exhibiting opposite optical rotation to that of a corresponding oxazolidinyl group at the terminal of the main chain. This suggests that opposite optical rotation to the corresponding chiral oxazolidine was induced to the polymer main chain. In the polymerization using a fluorenyllithium (FlLi)–oxazolidine complex, the obtained polymer with a fluorenyl group at the polymer end showed a negative specific rotation. This also suggests that asymmetric induction took place in the polymer main chain. The asymmetric induction was supported by the circular dichroism (CD) and GPC analysis with polarimetric detector. Optical activity of the polymer was attributed to different contents of (S,S) and (R,R) structures formed from threo‐diisotactic additions, as supported by the 13C‐NMR spectra of the polymers and the model compounds. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 473–482, 1999  相似文献   

17.
The dimeric cinchona alkaloid (DHQD)2PHAL is used to catalyze an effective asymmetric bromohydroxylation of unfunctionalized olefins with H2O as nucleophile an N‐bromobenzamide as a bromine source. A variety of optically active bromohydrins are formed with up to 88 % ee.  相似文献   

18.
The optimization of a practical, catalytic, asymmetric process for the alpha-bromination of acid chlorides to produce synthetically versatile, optically active alpha-bromoesters is reported. A range of products is produced in high enantioselectivity and moderate to good chemical yields with retention of both upon scale-up. The reactions herein are catalyzed by cinchona alkaloid derivatives, with the best performance achieved by the use of a proline cinchona alkaloid conjugate designed in a de novo fashion.  相似文献   

19.
Directed helicity control of a polyacetylene dynamic helix was achieved by hybridization with a rotaxane skeleton placed on the side chain. Rotaxane-tethering phenylacetylene monomers were synthesized in good yields by the ester end-capping of pseudorotaxanes that consisted of optically active crown ethers and sec-ammonium salts with an ethynyl benzoic acid. The monomers were polymerized with [{RhCl(nbd)}(2)] (nbd=norbornadiene) to give the corresponding polyacetylenes in high yields. Polymers with optically active wheel components that are far from the main chain show no Cotton effect, thereby indicating the formation of racemic helices. Our proposal that N-acylative neutralization of the sec-ammonium moieties of the side-chain rotaxane moieties enables asymmetric induction of a one-handed helix as the wheel components approach the main chain is strongly supported by observation of the Cotton effect around the main-chain absorption region. A polyacetylene with a side-chain rotaxane that has a shorter axle component shows a Cotton effect despite the ammonium structure of the side-chain rotaxane moiety, thereby suggesting the importance of proximity between the wheel and the main chain for the formation of a one-handed helix. Through-space chirality induction in the present systems proved to be as powerful as through-bond chirality induction for formation of a one-handed helix, as demonstrated in an experiment using non-rotaxane-based polyacetylene that had an optically active binaphthyl group. The present protocol for controlling the helical structure of polyacetylene therefore provides the basis for the rational design of one-handed helical polyacetylenes.  相似文献   

20.
《Tetrahedron: Asymmetry》2005,16(21):3481-3483
We describe a column based flow system in which a cinchona alkaloid based reagent/catalyst solid-phase promotes the asymmetric α-chlorination of acid chlorides to afford highly optically active α-chloroesters in high enantiomeric excess and in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号