首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of ethylene, propylene homopolymerizations, and ethylene/propylene copolymerization catalyzed with rac‐Et(Ind)2ZrCl2/modified methylaluminoxane (MMAO) were conducted under the same conditions for different duration ranging from 2.5 to 30 min, and quenched with 2‐thiophenecarbonyl chloride to label a 2‐thiophenecarbonyl on each propagation chain end. The change of active center ratio ([C*]/[Zr]) with polymerization time in each polymerization system was determined. Changes of polymerization rate, molecular weight, isotacticity (for propylene homopolymerization) and copolymer composition with time were also studied. [C*]/[Zr] strongly depended on type of monomer, with the propylene homopolymerization system presented much lower [C*]/[Zr] (ca. 25%) than the ethylene homopolymerization and ethylene–propylene copolymerization systems. In the copolymerization system, [C*]/[Zr] increased continuously in the reaction process until a maximum value of 98.7% was reached, which was much higher than the maximum [C*]/[Zr] of ethylene homopolymerization (ca. 70%). The chain propagation rate constant (kp) of propylene polymerization is very close to that of ethylene polymerization, but the propylene insertion rate constant is much smaller than the ethylene insertion rate constant in the copolymerization system, meaning that the active centers in the homopolymerization system are different from those in the copolymerization system. Ethylene insertion rate constant in the copolymerization system was much higher than that in the ethylene homopolymerization in the first 10 min of reaction. A mechanistic model was proposed to explain the observed activation of ethylene polymerization by propylene addition. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 867–875  相似文献   

2.
A series of heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐tBu‐2‐OC6H3CH?N(C6F5)] [PhN?C(CF3)CHCRO]TiCl2 [ 3a : R = Ph, 3b : R = C6H4Cl(p), 3c : R = C6H4OMe(p), 3d : R = C6H4Me(p), 3e : R = C6H4Me(o)] were synthesized and characterized. Molecular structures of 3b and 3c were further confirmed by X‐ray crystallographic analyses. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts displayed favorable ability to incorporate 5‐vinyl‐2‐norbornene (VNB) and 5‐ethylidene‐2‐norbornene (ENB) into the polymer chains, affording high‐molecular weight copolymers with high‐comonomer incorporations and alternating sequence under the mild conditions. The comonomer concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resultant copolymer. At initial comonomer concentration of higher than 0.4 mol/L, the titanium complexes with electron‐donating groups in the β‐enaminoketonato moiety mediated room‐temperature living ethylene/VNB or ENB copolymerizations. Polymerization results coupled with density functional theory calculations suggested that the highly controlled living copolymerization is probably a consequence of the difficulty in chain transfer of VNB (or ENB)‐last‐inserted species and some characteristics of living ethylene polymerization under limited conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009  相似文献   

4.
Three heteroligated (salicylaldiminato)(β‐enaminoketonato)titanium complexes [3‐But‐2‐OC6H3CH?N(C6F5)][(p‐XC6H4)N?C(But)CHC(CF3)O]TiCl2 ( 3a : X = F, 3b : X = Cl, 3c : X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the β‐enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. When the norbornene concentration in the feed is higher than 0.4 mol/L, the heteroligated catalysts mediated the living copolymerization of ethylene with norbornene to form narrow molecular weight distribution copolymers (Mw/Mn < 1.20), which suggested that chain termination or transfer reaction could be efficiently suppressed via the addition of norbornene into the reaction medium. Polymer yields, catalytic activity, molecular weight, and norbornene incorporation can be controlled within a wide range by the variation of the reaction parameters such as comonomer content in the feed, reaction time, and temperature. ©2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6072–6082, 2009  相似文献   

5.
We investigated the catalytic performance of both bridged unsubstituted [rac‐EtInd2ZrMe2, rac‐Me2SiInd2ZrMe2] and 2‐substituted [rac‐Et(2‐MeInd)2ZrMe2), rac‐Me2Si(2‐MeInd)2ZrMe2] dimethylbisindenylzirconocenes activated with triisobutyl aluminum (TIBA) as a single activator in (a) homopolymerizations of ethylene and propylene, (b) copolymerization of ethylene with propylene and hexene‐1, and (c) copolymerization of propylene with hexene‐1 (at AlTIBA/Zr = 100‐300 mol/mol). Unsubstituted catalysts were inactive in homopolymerizations of ethylene and propylene and copolymerization of propylene with hexene‐1 but exhibited high activity in copolymerizations of ethylene with propylene and hexene‐1. 2‐Substituted zirconocenes activated with TIBA were active in homopolymerizations of ethylene and propylene and exhibited high activity in copolymerization of ethylene with propylene and hexene‐1, and in copolymerization of propylene with hexene‐1. Comparative microstructural analysis of ethylene‐propylene copolymers prepared over rac‐Me2SiInd2ZrMe2 activated with TIBA or Me2NHPhB(C6F5)4 has shown that the copolymers formed upon activation with TIBA are statistical in nature with some tendency to alternation, whereas those with borate activated system show a tendency to formation of comonomer blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2934–2941, 2010  相似文献   

6.
Aryloxo‐modified half‐titanocenes, Cp′TiCl2(O‐2,6‐iPr2C6H3) [Cp′ = Cp* ( 1 ), tBuC5H4 ( 2 )], catalyze terpolymerization of ethylene and styrene with α‐olefin (1‐hexene and 1‐decene) efficiently in the presence of cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions (compositions). Efficient comonomer incorporations have been achieved by these catalysts. The content of each comonomer (α‐olefin, styrene, etc.) could be controlled by varying the comonomer concentration charged, and resonances ascribed to styrene and α‐olefin repeated insertion were negligible. The terpolymerization with p‐methylstyrene (p‐MS) in place of styrene also proceeded in the presence of [PhN(H)Me2][B(C6F5)4] and AliBu3 cocatalyst, and p‐MS was incorporated in an efficient matter, affording high‐molecular‐weight polymers with uniform molecular weight distributions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2565–2574  相似文献   

7.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

8.
An efficient introduction of vinyl group into poly (ethylene‐co‐styrene) or poly(ethylene‐co?1‐hexene) has been achieved by the incorporation of 3,3′‐divinylbiphenyl (DVBP) in terpolymerization of ethylene, styrene, or 1‐hexene with DVBP using aryloxo‐modified half‐titanocenes, Cp′TiCl2(O?2,6‐iPr2C6H3) [Cp′ = Cp*, tBuC5H4, 1,2,4‐Me3C5H2], in the presence of MAO cocatalyst, affording high‐molecular‐weight polymers with unimodal distributions. Efficient comonomer incorporations have been achieved by these catalysts, and the content of each comonomer could be varied by its initial concentration charged. The postpolymerization of styrene was initiated from the vinyl group remained in the side chain by treatment with n‐BuLi. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2581–2587  相似文献   

9.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

10.
Cp2ZrCl2 confined inside the supercage of NaY zeolites [NaY/methylaluminoxane (MAO)/Cp2ZrCl2] exhibited the shape and diffusion of a monomer‐controlled copolymerization mechanism that strongly depended on the molecular structure of the monomer and its size. For the ethylene–propylene copolymerization, NaY/MAO/Cp2ZrCl2 showed the effect of the comonomer on the increase in the polymerization rate in the presence of propylene, whereas the ethylene/1‐hexene copolymerization showed little comonomer effect, and the ethylene/1‐octene copolymerization instead showed a comonomer depression effect on the polymerization rate. Isobutylene, having a larger kinetic diameter, had little influence on the copolymerization behaviors with NaY/MAO/Cp2ZrCl2 for the ethylene–isobutylene copolymerization, which showed evidence of the shape and diffusion of a monomer‐controlled mechanism. The content of the comonomer in the copolymer chain prepared with NaY/MAO/Cp2ZrCl2 decreased by about one‐half in comparison with that of Cp2ZrCl2. A differential scanning calorimetry study on the melting endotherms after the successive annealing of the copolymers showed that the copolymers of NaY/MAO/Cp2ZrCl2 had narrow comonomer distributions, whereas those of homogeneous Cp2ZrCl2 were broad. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2171–2179, 2003  相似文献   

11.
[3‐Cyano‐2‐(2,6‐diisopropylphenyl)aminopent‐2‐en‐4‐(phenylimine)tris (pentafluorophenyl)borate](η5‐C5H5)ZrCl2, [(B(C6F5)3‐ NC‐nacnac)CpZrCl2], precatalyst ( 2 ) can be treated with low concentrations of methylaluminoxane (MAO) to generate active sites capable of copolymerizing ethylene with 1‐octadecene or norbornene under mild conditions. A series of poly(ethylene‐co‐octadecene) and poly(ethylene‐co‐norbornene) copolymers were prepared, and their properties were characterized by NMR, differential scanning calorimetry, and mechanical analysis. The results show that this system produced poly(ethylene‐co‐octadecene) copolymers with a branching content of about 8 mol %. However, upon increasing the comonomer concentration, a drastic reduction in the Mn of the product is observed concomitant with an increase in comonomer incorporation. This leads to a gradual decrease in Young's modulus and stress at break, indicating an increase in the “softness” of the copolymer. In the case of copolymerizations of ethylene and norbornene, the catalytic system ( 2 /MAO) shows a substantial decrease in reactivity in the presence of norbornene and generates copolymer chains in which 5–10 mol % norbornene is in blocks. We also observe that ethylene norbornene copolymers exhibit a high degree of alternating insertions (close to 50%), as determined by NMR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Olefin polymerizations catalyzed by Cp′TiCl2(O‐2,6‐iPr2C6H3) ( 1 – 5 ; Cp′ = cyclopentadienyl group), RuCl2(ethylene)(pybox) { 7 ; pybox = 2,6‐bis[(4S)‐4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine}, and FeCl2(pybox) ( 8 ) were investigated in the presence of a cocatalyst. The Cp*TiCl2(O‐2,6‐iPr2C6H3) ( 5 )–methylaluminoxane (MAO) catalyst exhibited remarkable catalytic activity for both ethylene and 1‐hexene polymerizations, and the effect of the substituents on the cyclopentadienyl group was an important factor for the catalytic activity. A high level of 1‐hexene incorporation and a lower rE · rH value with 5 than with [Me2Si(C5Me4)(NtBu)]TiCl2 ( 6 ) were obtained, despite the rather wide bond angle of Cp Ti O (120.5°) of 5 compared with the bond angle of Cp Ti N of 6 (107.6°). The 7 –MAO catalyst exhibited moderate catalytic activity for ethylene homopolymerization and ethylene/1‐hexene copolymerization, and the resultant copolymer incorporated 1‐hexene. The 8 –MAO catalyst also exhibited activity for ethylene polymerization, and an attempted ethylene/1‐hexene copolymerization gave linear polyethylene. The efficient polymerization of a norbornene macromonomer bearing a ring‐opened poly(norbornene) substituent was accomplished by ringopening metathesis polymerization with the well‐defined Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)[OCMe(CF3)2]2 ( 10 ). The key step for the macromonomer synthesis was the exclusive end‐capping of the ring‐opened poly(norbornene) with p‐Me3SiOC6H4CHO, and the use of 10 was effective for this polymerization proceeding with complete conversion. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4613–4626, 2000  相似文献   

13.
A series of C1‐symmetric titanium complexes with both salicylaldiminato and β‐enaminoketonato as the ligands have been synthesized and investigated as the catalysts for propylene polymerization. In the presence of dried methylaluminoxane (dMAO), the complex with bulky substituent tert‐butyl ortho to alkyl oxygen can promote living polymerization of propylene with improved catalytic activity at ambient temperature, producing high molecular weight syndiotactic polypropylenes (rrrr 90.2%) with narrow molecular weight distributions (Mw/Mn = 1.07–1.22), via a propagation of 1,2‐insertion of monomer and chain‐end control of stereoselectivity. The propagation of polymer chain is completely different from that mediated by FI catalysts (the titanium complexes with phenoxy‐imine chelate ligands) which favor 2,1‐insertion of monomer. The interaction between a fluorine and a β‐hydrogen of a growing polymer chain, negligible chain transfer to monomer and dMAO without any free AlMe3 were responsible for the achievement of living propylene polymerization. The substituent ortho to alkyl oxygen determined the stereo structure of the resultant polypropylene. In the case of less steric congested complexes with two nonequivalent coordination positions, the growing polymer chain might swing back to the favorite coordination position (site‐epimerization), forming m dyads regioirregular units. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
During nitroxide‐mediated polymerization, the polymerization time decreases with an increasing rate constant of the cleavage of the NO? C bond of dormant alkoxyamines. Thus, knowledge of the factors influencing this cleavage is of considerable interest. We have prepared a series of SG1 2‐[Ntert‐butyl‐N‐(1‐diethoxyphosphoryl‐2,2‐dimethylpropyl)aminoxyl] based alkoxyamines [SG1‐CH(Me)CO2R] with various R groups (alkyl or aryl) and measured the homolysis rate constants (kd). kd decreases with the bulkiness and increases with the polarity of the R group. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3504–3515, 2004  相似文献   

15.
The free‐radical copolymerization of m‐isopropenyl‐α,α′‐dimethylbenzyl isocyanate (TMI) and styrene was studied with 1H NMR kinetic experiments at 70 °C. Monomer conversion vs time data were used to determine the ratio kp × kt?0.5 for various comonomer mixture compositions (where kp is the propagation rate coefficient and kt is the termination rate coefficient). The ratio kp × kt?0.5 varied from 25.9 × 10?3 L0.5 mol?0.5 s?0.5 for pure styrene to 2.03 × 10?3 L0.5 mol?0.5 s?0.5 for 73 mol % TMI, indicating a significant decrease in the rate of polymerization with increasing TMI content in the reaction mixture. Traces of the individual monomer conversion versus time were used to map out the comonomer mixture composition drift up to overall monomer conversions of 35%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed was observed. This depletion became more pronounced at higher levels of TMI in the initial comonomer mixture. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1064–1074, 2002  相似文献   

16.
Propagation rate coefficients, kp, of methyl methacrylate (MMA) and glycidyl methacrylate (GMA) homopolymerizations were measured at ambient pressure in four ionic liquids (ILs): 1‐ethyl‐3‐methylimidazolium ([emim]) ethyl sulfate and [emim] hexyl sulfate as well as butyl‐3‐methylimidazolium ([bmim]) hexafluorophosphate and [bmim] tetrafluoroborate via the pulsed‐laser polymerization size‐exclusion chromatography technique. In passing from bulk polymerization at 40 °C polymerization in IL solution containing 20 vol % monomer, kp is enhanced by up to a factor of 4 with MMA and by a factor of 2 with GMA. This enhancement of kp primarily results from a lowering of activation energy upon partial replacement of monomer by ionic liquid species. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1460–1469, 2008  相似文献   

17.
p‐Toluenesulfonic acid (TsOH) and several alkyl p‐toluenesulfonates, that is, methyl p‐toluenesulfonate (TsOMe), cyclohexyl p‐toluenesulfonate (TsOCH), and neopentyl p‐toluenesulfonate (TsONP), were evaluated as initiators for the ring‐opening polymerization of benzoxazines. TsOH and TsOMe were highly efficient initiators that induced the polymerization at 60 and 80 °C, respectively. In contrast, TsOCH and TsONP did not initiate the polymerization below 100 °C, while they induced the polymerization at elevated temperatures, 120 and 150 °C, respectively. When TsOCH was used as an initiator, the corresponding polymerization rate was comparable to that observed for the polymerization with using TsOH as an initiator. These results suggested that neutral TsOCH and TsONP can be regarded as “thermally latent initiators,” which underwent the thermal dissociation at the elevated temperatures to generate the corresponding alkyl cations and/or TsOH as the initiators of the polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1‐symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐cyclopentadienyl)ZrCl2 ( 1 ), ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 2 ), and ethylene(1‐(9)‐fluorenyl‐(R)1‐phenyl‐2‐(1‐indenyl)ZrCl2 ( 3 ). Polyethenes produced with 1 /MAO had considerable, ca. 10% amount of trans‐vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1‐hexene or 1‐hexadecene using 1 /MAO, molar mass of the copolymers varied from high to moderate (531–116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1‐olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2 /MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3 /MAO produced polyethenes with extremely small amounts of trans‐vinylene end groups and relatively low molar mass 1‐hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1 . These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1‐olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3 /MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373–382, 2008  相似文献   

19.
The hydrogen activation effect in propylene polymerization reactions with Ti‐based Ziegler–Natta catalysts is usually explained by hydrogenolysis of dormant active centers formed after secondary insertion of a propylene molecule into the growing polymer chain. This article proposes a different mechanism for the hydrogen activation effect due to hydrogenolysis of the Ti? iso‐C3H7 group. This group can be formed in two reactions: (1) after secondary propylene insertion into the Ti? H bond (which is generated after β‐hydrogen elimination in the growing polymer chain or after chain transfer with hydrogen), and (2) in the chain transfer with propylene if a propylene molecule is coordinated to the Ti atom in the secondary orientation. The Ti? CH(CH3)2 species is relatively stable, possibly because of the β‐agostic interaction between the H atom of one of its CH3 groups and the Ti atom. The validity of this mechanism was demonstrated in a gas chromatography study of oligomers formed in ethylene/α‐olefin copolymerization reactions with δ‐TiCl3/AlEt3 and TiCl4/dibutyl phthalate/MgCl2–AlEt3 catalysts. A quantitative analysis of gas chromatography data for ethylene/propylene co‐oligomers showed that the probability of secondary propylene insertion into the Ti? H bond was only 3–4 times lower than the probability of primary insertion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1353–1365, 2002  相似文献   

20.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号