首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We investigated the stability of magnetic moments in Al69.8Pd12.1Mn18.1. This alloy exists in both, the icosahedral (i) and the decagonal (d) quasicrystalline form. The transition from the i- to the d-phase is achieved by a simple heat treatment. We present the results of measurements of the 27Al NMR-response, the dc magnetic susceptibility, and the low-temperature specific heat of both phases. In the icosahedral compound, the majority of the Mn ions carries a magnetic moment. Their number is reduced by approximately a factor of two by transforming the alloy to its decagonal variety. For both compounds, we have indications for two different local environments of the Al nuclei. The first reflects a low density of states of conduction electrons and a weak coupling of the Al nuclei to the Mn-moments. The second type of environment implies a large d-electron density of states at the Fermi level and a strong coupling to the magnetic Mn moments. Spin-glass freezing transitions are observed at Tdecaf=12 K for the decagonal, and Ticof=19 K for the icosahedral phase.  相似文献   

2.
The ab initio FLAPW-GGA calculations of the band structure of a new layered low-temperature (T C ~ 2.2 K) La3Ni4P4O2 superconductor are presented. The energy bands, distributions of the densities of electron states, charge states of the atomic layers, low-temperature electron specific heat, and molar Pauli paramagnetic susceptibility for La3Ni4P4O2 have been determined. They are discussed compared to the existing experimental data.  相似文献   

3.
The layered LiNi0.5Mn0.47Al0.03O2 was synthesized by wet chemical method and characterized by X-ray diffraction and analysis of magnetic measurements. The powders adopted the α-NaFeO2 structure. This substitution of Al for Mn promotes the formation of Li(Ni0.472+Ni0.033+Mn0.474+Al0.033+)O2 structures and induces an increase in the average oxidation state of Ni, thereby leading to the shrinkage of the lattice unit cell. The concentration of antisite defects in which Ni2+ occupies the (3a) Li lattice sites in the Wyckoff notation has been estimated from the ferromagnetic Ni2+(3a)–Mn4+(3b) pairing observed below 140 K. The substitution of 3% Al for Mn reduces the amount of antisite defects from 7% to 6.4–6.5%. The analysis of the magnetic properties in the paramagnetic phase in the framework of the Curie–Weiss law agrees well with the combination of Ni2+ (S = 1), Ni3+ (S = 1/2) and Mn4+ (S = 3/2) spin-only values. Delithiation has been made by the use of K2S2O8. According to this process, known to be softer than the electrochemical one, the nickel ions in the (3b) sites are converted into Ni4+ in the high spin configuration, while Ni2+(3a)–Mn4+(3b) ferromagnetic pairs remain, as the Li+(3b) ions linked to the Ni2+(3a) ions in the antisite defects are not removed. The results show that the antisite defect is surrounded by Mn4+ ions, implying the nonuniform distribution of the cations in agreement with previous NMR and neutron experiments.  相似文献   

4.
We investigate the processes of crystallization and determined the structure and thermal properties of Al86Ni8Ho6 amorphous alloy in a wide temperature range. A three-stage nature of the crystallization process upon heating to a temperature of 700 K is found. According to data of high-temperature X-ray diffraction analysis, the crystallization of an Al86Ni8Ho6 amorphous ribbon is rather complex: aluminum crystallites grow in the amorphous phase to a temperature of 470 K, a Ho3Ni5Al19 phase is formed above 563 K, and a HoAl3 phase appears above 598 K. The phases of Ho3Ni5Al19 and HoAl3 are retained up to a temperature of 723 K. A three-stage kinetic model of the crystallization process with the reaction sequence is proposed based on calculations by multivariate nonlinear regression. The values of the total activation energy for each crystallization stage reach 239, 378, and 247 kJ/mol.  相似文献   

5.
We calculate electronic states of fifty icosahedral Ni5Nb3Zr5 clusters and optimize their structures by first principles calculations within the generalized gradient approximation. Based on the energetic stability and the atomic configuration, we search for some candidates for the local structural units of Ni36Nb24Zr40 glassy alloys by comparing with the experimental data measured by the XAFS method. The Ni-centered icosahedral Ni5Nb3Zr5 clusters containing a Nb-triangle are proposed as the structural units, which in turn combine into local structures of the glassy alloy.  相似文献   

6.
Comparative studies of physical characteristics (the electrical resistivity, the magnetic susceptibility, the magnetization, the bending deformation, and the degree of shape recovery during subsequent heating) of the Ni54Mn21Ga25 ferromagnetic alloy as-cast and rapidly quenched from melt have been performed in the temperature range 2–400 K. The results are compared to the results of studying the structural–phase transformations by transmission and scanning electron microscopy and X-ray diffraction. It is found that the rapid quenching influences the microstructure, the magnetic state, the critical temperatures, and the specific features of thermoelastic martensite transformations in the alloy. It is found that the resource of the alloy plasticity and thermomechanical bending cyclic stability demonstrates a record-breaking increase in the intercritical temperature range and during subsequent heating.  相似文献   

7.
The effect of severe plastic deformation by torsion (SPDT) in Bridgman anvils at a high pressure (6 GPa) on the physical properties and crystal structure of the shape memory alloy Ti49.5Ni50.5 has been studied. The behavior of the thermal expansion, electrical resistivity, absolute differential thermopower, Hall coefficient, magnetic properties, and optical characteristics of the amorphous/nanocrystalline and submicrocrystalline alloys obtained by the SPDT with subsequent heat treatment at 800 K has been discussed.  相似文献   

8.
A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2×1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be, further understood.  相似文献   

9.
The specific heats of the amorphous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67 were studied in the temperature range 3–273 K. The data obtained allow one to isolate the contribution due to atomic vibrations from the experimentally measured specific heat, to determine the density of electronic states at the Fermi level and the temperature dependence of the characteristic Debye parameter Θ over a broad temperature range, and to calculate a few frequency moments that characterize the vibrational spectrum. The information derived on the average characteristics of vibrational spectra is in good agreement with earlier data on inelastic neutron scattering. In transferring from Ni44Nb56 to Ni62Nb38, the density of electronic states at the Fermi level decreases and the characteristic vibrational frequencies increase. The density of electronic states at the Fermi level for Cu33Zr67 is close to that for Ni62Nb38. The characteristic frequencies of the vibrational spectrum of the Cu33Zr67 system are substantially lower (by 30%) than those of the Ni44Nb56 and Ni62Nb38 systems.  相似文献   

10.
Two successive magnetocaloric effects consisting of inverse magnetocaloric effect around martensitic transition and negative magnetocaloric effect around magnetic transition of austenitic phase have been observed in Ni50Mn34In15Al alloy. Large inverse magnetic entropy change ΔSm ( ~ 21.3 J kg?1 K?1), small thermal and magnetic hysteresis of martensitic transition give rise of large net refrigerant capacity ( ~ 152.3 J kg?1) under a magnetic field of 50 kOe, which is comparable with that ( ~ 157.9 J kg?1) of second-order transition. The large combined magnetocaloric effects make the Ni50Mn34In15Al alloy as a promising candidate material for room temperature magnetic refrigeration.  相似文献   

11.
陈乐  王海鹏  魏炳波 《物理学报》2009,58(1):384-389
采用电磁悬浮落滴式量热方法测定了液态三元Ni60Cu20Fe20合金在1436—2008K温度范围内的比热,实验获得的最大过冷度达232K(0.14TL),结果表明比热值为33.27J·mol-1·K-1,并且随温度变化很小.在实验基础上,根据分子动力学方法结合嵌入原子势(EAM)和Quantum Sutton-Chen多体势(QSC)对比热进行了理论计算,揭示 关键词: 液态合金 比热 电磁悬浮 分子动力学计算  相似文献   

12.
We have reported the results of investigations of the structure and chemical and phase compositions of the amorphous Ni50Ti32Hf18 alloy prepared by rapid quenching from melt by spinning and subjected to heat treatments. The specific features of the fine polycrystalline alloy structure formation depending on the heat-treatment mode have been studied by transmission and scanning electron microscopy, chemical microanalysis, electron diffraction, and X-ray diffraction analysis. According to the data on the temperature behavior of electrical resistivity, critical temperatures of devitrification and subsequent thermoelastic martensitic transformation B2 → B19′ have been determined. The mechanical properties in different heat-treatment modes have been investigated.  相似文献   

13.
The magnetization, the electrical resistivity, the specific heat, the thermal conductivity, and the thermal diffusion of a polycrystalline Heusler alloy Ni45.37Mn40.91In13.72 sample are studied. Anomalies, which are related to the coexistence of martensite and austenite phases and the change in their ratio induced by a magnetic field and temperature, are revealed and interpreted. The behavior of the properties of the alloy near Curie temperature TC also demonstrates signs of a structural transition, which suggests that the detected transition is a first-order magnetostructural phase transition. The nontrivial behavior of specific heat detected near the martensite transformation temperatures is partly related to a change in the electron density of states near the Fermi level. The peculiar peak of phonon thermal conductivity near the martensitic transformation is interpreted as a consequence of the appearance of additional soft phonon modes, which contribute to the specific heat and the thermal conductivity.  相似文献   

14.
Ni80Mo7B13 nanocrystalline alloy containing a Ni(Mo,B) face-centered cubic (FCC) solid solution of the substitutional-interstitial type was obtained by high-energy ball milling of the component mixtures. In the temperature range 400–700°C, the metastable solid solution Ni(Mo,B) decomposes, leading to the formation of metastable FCC Ni(Mo) and HCP MoB4 phases. Upon isothermal annealing at 1000°C for1 h, the alloy transforms into the stable state and contains the equilibrium phases FCC Ni(Mo), cubic Ni21Mo2B6, and orthorhombic Ni3B.  相似文献   

15.
Melting of primary Al3Ni2 phase and solidification of Al3Ni peritectic phase during directional solidification of an Al–25at%Ni peritectic alloy have been investigated. In a steep temperature gradient of up to 50 K/mm and at a pulling rate of 20 μm/s, an incomplete coverage of peritectic Al3Ni phase on the surface of the primary Al3Ni2 phase has been observed. Below the peritectic temperature in the presence of the incomplete coverage, melting of primary Al3Ni2 on the one side and solidification to the Al3Ni peritectic phase on the other side proceed swiftly via diffusion through the interphase liquid layer. Theoretical calculations based on an incomplete-coverage-related melting/solidification model are in close agreement with the experimental measurements.  相似文献   

16.
Cascade of phase transitions in GdFe3(BO3)4 at 156, 37, and 9 K has been detected by specific heat measurements and further studied by Raman scattering and Nd3+ spectroscopic probe method. A weakly first-order structural phase transition at 156 K is followed by a second-order antiferromagnetic ordering phase transition at 37 K and a first-order spin-reorientational phase transition at 9 K.  相似文献   

17.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

18.
The effect of heat treatment over the range from room temperature to 500°C on the elastic properties of a bulk amorphous Pd40Cu30Ni10P20 alloy was studied. It is shown that the increase in the shear modulus under crystallization of the alloy is two-staged and that the most significant increase in the modulus occurs at the second stage. The obtained results are compared to the x-ray structural data. It is also found that the density characteristics of the as-cast material change very slightly during the transformation from the amorphous to the crystal state, with the density decreasing slightly due to crystallization.  相似文献   

19.
Ti42.5Zr7.5Cu40Ni5Sn5 bulk metallic glass with a critical diameter of 4 mm was fabricated by the conventional copper mould casting method. The supercooled liquid region ΔT x, reduced glass transition temperature T rg, γ parameter, and δ parameter of the alloy were measured to be 63.9 K, 0.561, 0.393, and 1.400, respectively, implying that the alloy has an excellent glass-forming ability. The bulk metallic glass exhibits high compressive fracture strength of 2162 MPa with distinct plastic strain of 0.9%. The fracture surface consists mainly of vein-like patterns, typical of bulk glassy alloys. Supported by the Program for New Century Excellent Talents in University of China and the National Natural Science Foundation of China (NSFC)(Grant No. 50771040)  相似文献   

20.
In this paper we describe the alloying process of ultra-thin Al layers (below 8 × 1015 Al/cm2) deposited on Ni(1 1 1). For this purpose Auger electron spectroscopy, low energy electron diffraction, and ion beam analysis-channelling measurements have been performed in situ in an ultra-high vacuum chamber. Al deposits formed at low temperature (about 130 K) are strained defective crystalline layers retaining the substrate orientation. Alloying takes place, with very progressive Ni enrichment, in a very broad temperature range between 250 K and 570 K. This feature shows that diffusion of the alloy species is more and more difficult when the Ni concentration increases. At 570 K a crystallographically and chemically ordered Ni3Al phase is formed, and its order continuously improves upon annealing, up to 750 K. We have shown by ion beam methods that this alloy is three-dimensional, extending up to 16 (1 1 1) planes for the thickest deposits. The Ni3Al phase can also be obtained directly by Al deposition at 750 K, but its crystalline quality is lower and the layer is probably formed of grains elongated along 〈1 1 −2〉 directions. The Al content of the thin Ni3Al layers formed mostly dissolves in the bulk above 800 K. However a small amount of Al remains segregated at the Ni crystal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号