首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The inhibition effect of 1,1′-thiocarbonyldiimidazole (TCDI) on the corrosion behaviors of mild steel (MS) in 0.5 mol·L−1 H2SO4 solution was studied with the help of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and linear polarization resistance (LPR) techniques. The effect of immersion time on the inhibition effect of TCDI was also investigated over 72 h. For the long-term tests, hydrogen evolution with immersion time (VH2-t) was measured in addition to the three techniques already mentioned. The thermodynamic parameters, such as adsorption equilibrium constant (Kads) and adsorption free energy (ΔGads) values, were calculated and discussed. To clarify inhibition mechanism, the synergistic effect of iodide ion was also investigated. The potential of zero charge (PZC) of the MS was studied by electrochemical impedance spectroscopy method, and a mechanism of adsorption process was proposed. It was demonstrated that inhibition efficiency increased with the increase in TCDI concentration and synergistically increased in the presence of KI. The inhibition efficiency was discussed in terms of adsorption of inhibitor molecules on the metal surface and protective film formation.  相似文献   

2.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

3.
The synergistic action caused by iodide ions on the corrosion inhibition of mild steel in 1 M H2SO4 by leaves and stem extracts of Sida acuta was studied using weight loss and hydrogen evolution methods at 30–60 °C. It was found that the leaves and stem extracts of S. acuta inhibited the acid induced corrosion of mild steel. Addition of iodide ions enhances the inhibition efficiency to a considerable extent. The inhibition efficiency increases with increase in the iodide ion concentration but decreases with rise in temperature. Adsorption of the extracts alone and in combination of iodide ion was found to obey Freundlich adsorption isotherm at all temperatures studied. Inhibition mechanism is deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. The synergism parameter (S1) is defined and evaluated from the inhibition efficiency values. This parameter for the different concentrations of iodide ions from the two techniques employed is found to be greater than unity indicating that the enhanced inhibition efficiency of the extracts caused by the addition of iodide ions is due to synergism.  相似文献   

4.
The inhibition performance of five azomethine derivatives such as: 1-(4-Methyloxy phenylimino)-1-(phenylhydrazono)-propan-2-one (SB1), 1-(4-Methylphenylimino)-1-(phenylhydrazono) propan-2-one (SB2), 1-(phenylimino)-1(phenylhydrazono)-propan-2-one (SB3), 1-(4-Bromo phenylimino)-1(phenylhydrazono)-propan-2-one (SB4) and 1-(4-Chlorophenylimino)-1(phenylhydrazono) -propan-2-on (SB5) as corrosion inhibitors for mild steel in sulfuric acid 0.5 ?M were investigated using different methods. All experimental results demonstrate that these compounds are eficients inhibitors. The inhibition efficiencies (IE) increase with inhibitors concentration. At 7.5 × 10?5 ?M, the IE was 97.27%, 96.31%, 94.23%, 93.19 and 91.64% for SB1, SB2, SB3, SB4 and SB5, respectively. The potentiodynamic polarization results indicated that all the studied inhibitors act as mixed type. The adsorption process on mild steel surface obeyed Langmuir isotherm. The associated activation parameters and thermodynamic have been calculated and discussed. The adsorbed film formed on the metal surface was characterized by SEM and EDX.  相似文献   

5.
武望婷  胡怀明  王尧宇  史启祯 《化学学报》2005,63(22):2032-2036
在水-乙醇混合体系中, 以2-羰基丙酸水杨酰腙(C10H10N2O4)、2,2-联吡啶(C10H8N2, 简写bipy)与Eu(NO3)3•4H2O反应, 首次培养出黄色单晶[Eu(C10H9N2O4)(C10H8N2O4)(H2O)3]•0.5bipy•3H2O. 该晶体属三斜晶系, 空间群为P-1, 晶胞参数a=0.93392(16) nm, b=1.3100(2) nm, c=1.3895(2) nm, α=97.205(3)°, β=105.411(2)°, γ=106.364(2)°, V=15.35(2) nm3, Z=2, μ=2.118 mm-1, Dc=1.686 Mg/m3, F(000)=786, R=0.0116, wR=0.0507, GOF=0.995. 晶体测试结果表明, 该单晶结构为铕的9配位配合物, 两个2-羰基丙酸水杨酰腙分别以负一价和负二价酮式和三个水分子同时参与配位; 每个2-羰基丙酸水杨酰腙中的羧基氧、酰胺基中的羰基氧和C=N中的氮与Eu3+配位, 形成两个共边的稳定五元环, 另三个配位原子则分别来自三个水分子中的氧原子, 该配合物在空间呈扭曲的单帽四方反棱柱, 而在不对称单位中还有游离的一个2,2-联吡啶分子和三个水分子, 这些游离分子与配位分子之间存在大量分子内和分子间氢键, 整个分子在空间呈三维网状结构. 发光性能测试表明该配合物具有很好的荧光性质.  相似文献   

6.
Differential scanning calorimetry of [Rb0.44(NH4)0.56]2HgCl4 · H2O material showed three anomalies at 340, 355 and 424 K, respectively. The room temperature phase has space group Pcma (a=8.433(1) Å, b=9.1817(9) Å and c=11.954(1)). Phase II (T=350 K) is disordered and exhibits orthorhombic symmetry (a=8.456(13), b=9.202(9) and c=12.011(10) Å). Hydrogen bonding, the nature and the degree of structure (dis)order and the mechanisms of the transitions are discussed. The dielectric constant at different frequencies and temperature revealed a phase transition at T=340 K related to NH4+ reorientation and H+ diffusion, and a characteristic increase above 355 K, which might be due to loss of water of crystallization. Transport properties in this compound appear to be due to an Rb+/NH4+ and H+ ions hopping mechanism.  相似文献   

7.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   

8.
9.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

10.
The dodecanuclear rhenium anionic complex with terminal hydroxo ligands [Re12CS17(OH)6]6− was obtained by the reaction of K6[Re12CS17(CN)6]·20H2O with molten KOH at 300 °C. The cluster complex was crystallized as a potassium salt from aqueous solution. The reaction between K6[Re12CS17(OH)6]·4H2O and Na2S2O4 in water under reflux results in the formation of the complex Na12[Re12CS17(SO3)6]·48.5H2O. Both new compounds were characterized by single-crystal X-ray diffraction, elemental analyses and IR spectroscopy. The electronic structure of [Re12CS17(OH)6]6− was also elucidated by DFT calculations.  相似文献   

11.
The hydrogen bond strength in kieserite-type sulfate and selenate monohydrates has been studied by the method of double-matrix spectroscopy. The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) kieserite-type compounds MXO4·H2O (M=Mn, Co, Ni, Zn, and X=S, Se) with matrix-isolated X′O42− and M′2+ guest ions are presented and discussed in the region of the OD stretching modes. The OD frequencies indicate that the compounds under investigation form comparatively strong hydrogen bonds. The frequency shifts of the uncoupled OD stretching modes of the HDO molecules within the isostructural series and those influenced by the guest ions, and the strength of the hydrogen bonds formed, are discussed in terms of the respective OwO distances, which hint at stronger hydrogen bonds for the sulfate series than for the selenate one by mistake, the larger hydrogen bond acceptor capability of SeO42− ions compared to SO42− ones, the different metal–water interactions and repulsion potentials of the lattice, and the reorientation of the water molecules caused by the guest ions. The shifts of the OD stretches of the ODOSe′O3 bonds (Se′O42− matrix isolated) to the lower wavenumbers as compared to the parent selenates are caused by the reorientation of the hydrate water molecules and strengthening the hydrogen bond to the stronger acceptor and vice versa. When smaller metal ions having smaller M–OH2 bond lengths and, hence, stronger synergetic effect replace larger ones, the OD stretches are shifted to lower wavenumbers as compared to those due to the host M–OwO bonds and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号