首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The discovery and implementation of the long-term metabolite of metandienone, namely 17β-hydroxymethyl-17α-methyl-18-norandrost-1,4,13-trien-3-one, to doping control resulted in hundreds of positive metandienone findings worldwide and impressively demonstrated that prolonged detection periods significantly increase the effectiveness of sports drug testing. For oxandrolone and other 17-methyl steroids, analogs of this metabolite have already been described, but comprehensive characterization and pharmacokinetic data are still missing. In this report, the synthesis of the two epimeric oxandrolone metabolites—17β-hydroxymethyl-17α-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one and 17α-hydroxymethyl-17β-methyl-18-nor-2-oxa-5α-androsta-13-en-3-one—using a fungus (Cunninghamella elegans) based protocol is presented. The reference material was fully characterized by liquid chromatography nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. To ensure a specific and sensitive detection in athlete’s urine, different analytical approaches were followed, such as liquid chromatography–tandem mass spectrometry (QqQ and Q-Orbitrap) and gas chromatography–tandem mass spectrometry, in order to detect and identify the new target analytes. The applied methods have demonstrated good specificity and no significant matrix interferences. Linearity (R 2?>?0.99) was tested, and precise results were obtained for the detection of the analytes (coefficient of variation <20 %). Limits of detection (S/N) for confirmatory and screening analysis were estimated at 1 and 2 ng/mL of urine, respectively. The assay was applied to oxandrolone post-administration samples to obtain data on the excretion of the different oxandrolone metabolites. The studied specimens demonstrated significantly longer detection periods (up to 18 days) for the new oxandrolone metabolites compared to commonly targeted metabolites such as epioxandrolone or 18-nor-oxandrolone, presenting a promising approach to improve the fight against doping.  相似文献   

2.
Madol (17alpha-methyl-5alpha-androst-2-en-17beta-ol) was identified in an oily product received by our laboratory in the context of our investigations of designer steroids. The product allegedly contained an anabolic steroid not screened for in routine sport doping control urine tests. Madol was synthesized by Grignard methylation of 5alpha-androst-2-en-17-one and characterized by mass spectrometry and NMR spectroscopy. We developed a method for rapid screening of urine samples by gas chromatography/mass spectrometry (GC/MS) of trimethylsilylated madol (monitoring m/z 143, 270, and 345). A baboon administration study showed that madol and a metabolite are excreted in urine. In vitro incubation with human liver microsomes yielded the same metabolite. Madol is only the third steroid never commercially marketed to be found in the context of performance-enhancing drugs in sports.  相似文献   

3.
Doping control analysis of performance‐enhancing peptides in urine represents a challenging requirement in modern sports drug testing. Low dosing, effective metabolism and short half‐life lead to target concentrations in the low fmol/mL range in urine. Synthetic adrenocorticotropic hormone (1‐24, Syn‐ACTH‐en) shares all these characteristics and improved analytical performance is required for its sufficient determination by means of liquid chromatography/tandem mass spectrometry (LC/MS/MS). The desired effects for cheating sportsmen are mainly due to enhanced release of corticosteroids as well as androgenic steroids into the circulation after systemic administration of the drug. Immunoaffinity purification with coated magnetic beads and subsequent liquid chromatography with nano‐ultra‐performance liquid chromatography (UPLC) coupled to tandem mass spectrometry (high resolution/high mass accuracy) of Synacthen from urinary specimens is described in the present study. The general proof of principle was obtained by analysis of excretion study urine samples and validation was performed with focus on the limit of detection (3 pg/mL), linearity, precision (<20%), recovery (~30%), robustness, specificity and stability. For all experiments, the ACTH fragment 1‐17 was used as the internal standard. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Tetrahydrogestrinone: discovery, synthesis, and detection in urine   总被引:5,自引:0,他引:5  
Tetrahydrogestrinone (18a-homo-pregna-4,9,11-trien-17beta-ol-3-one or THG) was identified in the residue of a spent syringe that had allegedly contained an anabolic steroid undetectable by sport doping control urine tests. THG was synthesized by hydrogenation of gestrinone and characterized by mass spectrometry and NMR spectroscopy. We developed and evaluated sensitive and specific methods for rapid screening of urine samples by liquid chromatography/tandem mass spectrometry (LC/MS/MS) of underivatized THG (using transitions m/z 313 to 241 and 313 to 159) and gas chromatography/high-resolution mass spectrometry (GC/HRMS) analysis of the combination trimethylsilyl ether-oxime derivative of THG (using fragments m/z 240.14, 254.15, 267.16, and 294.19). A baboon administration study showed that THG is excreted in urine.  相似文献   

5.
For the first time in the field of steroid residues in humans, demonstration of 19-norandrosterone (19-NA: 3alpha-hydroxy-5alpha-estran-17-one) and 19-noretiocholanolone (19-NE: 3alpha-hydroxy-5beta-estran-17-one) excretion in urine subsequent to boar consumption is reported. Three male volunteers agreed to consume 310 g of tissues from the edible parts (meat, liver, heart and kidney) of a boar. The three individuals delivered urine samples before and during 24 h after meal intake. After deconjugation of phase II metabolites, purification and specific derivatisation of target metabolites, the urinary extracts were analysed by mass spectrometry. Identification was carried out using measurements obtained by gas chromatography/high resolution mass spectrometry (GC/HRMS) (R = 7000) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) (positive electrospray ionisation (ESI+)). Quantification was realised using a quadrupole mass filter. 19-NA and 19-NE concentrations in urine reached 3.1 to 7.5 microg/L nearby 10 hours after boar tissue consumption. Levels returned to endogenous values 24 hours after. These two steroids are usually exploited to confirm the exogenous administration of 19-nortestosterone (19-NT: 17beta-hydroxyestr-4-en-3-one), especially in the antidoping field. We have thus proved that eating tissues of non-castrated male pork (in which 17beta-nandrolone is present) might induce some false accusations of the abuse of nandrolone in antidoping.  相似文献   

6.
Testosterone metabolism revisited: discovery of new metabolites   总被引:1,自引:0,他引:1  
The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography–tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.  相似文献   

7.
The administration of growth-promoting agents such as human growth hormone as well as compounds with respective secretagogue activity is prohibited in sports according to the regulations of the World Anti-Doping Agency. Acetylcholine esterase inhibitors have been demonstrated to stimulate growth-hormone secretion in elderly humans, and new orally active drugs have been developed to provide alternatives to therapeutic injections of growth-hormone preparations. Preventive anti-doping strategies include method development for emerging drugs and potentially misused compounds. Hence, the mass spectrometric dissociation behavior of three acetylcholine esterase inhibitors (donepezil, galantamine and rivastigmine) and a structural analogue to the growth-hormone secretagogue SM-130686 were studied using high-resolution/high-accuracy orbitrap mass spectrometry. These data provided substantial information for screening procedures, complementing common methods of sports drug testing. Using liquid-liquid extraction and subsequent liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis, the four target analytes were determined at urinary concentrations of 15-20 ng/mL, recoveries ranged from 55-97%, and assay precisions were calculated at 5.2-15.8% (intraday) and 10.2-21.6% (interday) for all compounds. The applicability of the developed assay to authentic urine specimens was tested using two administration study urine samples after application of Reminyl (galantamine) and Aricept (donepezil). In both cases, the administered drug and the respective desmethylated metabolites were detected.  相似文献   

8.
Bacteria frequently found in equine urine samples may cause degradation of 17beta-OH steroids. A simple liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed to evaluate the microbiological contamination of equine urine as a marker of poor storage conditions. Norethandrolone was used as the internal standard, and the linearity, sensitivity, precision and accuracy of the method were evaluated. 17beta-OH oxidation was demonstrated for testosterone, nandrolone, trenbolone and boldenone, but did not occur in alpha-epimers such as alpha-boldenone and epitestosterone, demonstrating the stereoselectivity of the reaction. A rapid test was performed by spiking one of the four 17beta-OH steroids in samples of diluted equine urine. The steroids were transformed into their respective ketones in the presence of bacterial activity. The test allows direct injection of diluted samples into the LC/MS system, without the need for prior extraction. Results show that the best method of storage is freezing at -18 degrees C. Urine specimens should be analyzed as soon as possible after thawing. This allows bacterial degradation of equine urine to be arrested temporarily, so that the urine can be used for qualitative or quantitative analysis of 17beta-OH steroids.  相似文献   

9.
Doping control in sport is mandatory to detect and to control the use of prohibited substances. Due to the growing number of targets, the analysis of doping compounds and their metabolites is carried out using established screening methods. However, detection of anabolic steroids with 4,9,11-triene structure in urine is problematic, so it is necessary to improve the methods.We review the state of the art in doping-control analysis of 4,9,11-trien-3-one steroids, providing an overview of the screening and confirmatory methods developed for these analytes in human urine. First, we review chromatographic techniques. We discuss difficulties in the derivatization of those compounds prior to gas chromatography analyses. In recent years, liquid chromatography has been the preferred technique in drug testing in sport, due to the reduced sample pre-treatment, improved limits of detection and comprehensiveness. We also report on advances and limitations of immunochemical techniques for the analysis of this group of substances.  相似文献   

10.
Isotope-dilution mass spectrometry has been employed successfully in numerous fields of analytical chemistry enabling the establishment of fast and reliable procedures. In equine sports, xanthine derivatives such as caffeine and theobromine are prohibited, and doping control laboratories analyze horse urine specimens regarding these illicit performance-enhancing drugs. Theobromine has to exceed a threshold level of 2 microg/mL, hence a robust and reliable quantitation is required. Stably deuterated theobromine and caffeine were synthesized by the reaction of xanthine or theobromine with iodomethane-d3 in the presence of N-methyl-N-trimethylsilyltrifluoroacetamide or potassium carbonate in acetonitrile, respectively. Both compounds were characterized by nuclear magnetic resonance spectroscopy and electrospray ionization tandem mass spectrometry, and a robust and fast assay for the qualitative and quantitative analysis of theobromine in equine urine samples was validated. Urine specimens were extracted by means of solid-phase extraction cartridges, and concentrated extracts were analyzed by liquid chromatography interfaced to a triple-quadrupole mass spectrometer. In addition, the dissociation behavior of deuterated analogues to caffeine and theobromine allowed proposals for fragmentation routes of xanthine derivatives after atmospheric pressure ionization and collisionally activated dissociation.  相似文献   

11.
Manipulation of urine sampling in sports drug testing is considered a violation of anti-doping rules and is consequently sanctioned by regulatory authorities. In 2003, three identical urine specimens were provided by three different athletes, and the identity of all urine samples was detected and substantiated using numerous analytical strategies including gas chromatography–mass spectrometry with steroid and metabolite profiling, gas chromatography–nitrogen/phosphorus detector analysis, high-performance liquid chromatography–UV fingerprinting, and DNA-STR (short tandem repeat) analysis. None of the respective athletes was the donor of the urine provided for doping analysis, which proved to be a urine sample collected from other unidentified individual(s). Samples were considered suspicious based on identical steroid profiles, one of the most important parameters for specimen individualization in sports drug testing. A database containing 14,224 urinary steroid profiles of athletes was screened for specific values of 4 characteristic parameters (ratios of testosterone/epitestosterone, androsterone/etiocholanolone, androsterone/testosterone, and 5α-androstane-3α,17β-diol/5β-androstane-3α,17β-diol) and only the three suspicious samples matched all criteria. Further metabolite profiling regarding indicated medications and high-performance liquid chromatography–UV fingerprinting substantiated the assumption of manipulation. DNA-STR analyses unequivocally confirmed that the 3 urine samples were from the same individual and not from the athletes who provided DNA from either buccal cell material or blood specimens. This supportive evidence led to punishment of all three athletes according to the rules of the World Anti-Doping Agency. Application of a new multidisciplinary strategy employing common and new doping control assays enables the detection of urine substitution in sports drug testing. Figure Identical GC-MS/NPD profiles of three urine specimens collected from three different individuals for doping control purposes  相似文献   

12.
The elucidation of the metabolism of new therapeutics is a major task for pharmaceutical companies and of great interest for drug testing laboratories. The latter in particular need to determine the presence or absence of drugs or their metabolic products in urine to test for a misuse of these compounds. Commonly, in vitro or animal models are used to mimic the human metabolism and produce potential targets in amounts allowing for method development. An alternative route based on electrochemical reactions of drugs was reported to allow for the generation of selected metabolites. The utility of this approach for doping control purposes was demonstrated with a novel class of anabolic agents termed selective androgen receptor modulators (SARMs). An arylpropionamide- derived drug candidate was subjected to electrochemical "metabolism" and a major phase-I- metabolite, resulting from the elimination of a substituted phenol residue as identified in in vitro experiments, was generated and characterised using liquid chromatography/nuclear magnetic resonance spectroscopy and high resolution/high accuracy mass spectrometry. The metabolite was included in routine doping control procedures based on liquid chromatography/tandem mass spectrometry and has served as a reference compound for 5000 doping control specimens.  相似文献   

13.
The use of performance enhancing drugs in sports is prohibited. For the detection of misuse of such substances gas chromatography or liquid chromatography coupled to mass spectrometry are the most frequently used detection techniques. In this work the development and validation of a fast gas chromatography tandem mass spectrometric method for the detection of a wide range of doping agents is described. The method can determine 13 endogenous steroids (the steroid profile), 19-norandrosterone, salbutamol and 11-nor-Δ9-tetrahydrocannabinol.9carboxylic acid in the applicable ranges and to detect qualitatively over 140 substances in accordance with the minimum required performance levels of the World Anti-Doping Agency in 1ml of urine. The classes of substances included in the method are anabolic steroids, β2-agonists, stimulants, narcotics, hormone antagonists and modulators and beta-blockers. Moreover, using a short capillary column and hydrogen as a carrier gas the run time of the method is less than 8min.  相似文献   

14.
Following administration of the anabolic steroid 19-nortestosterone or its esters to the horse, a major urinary metabolite is 19-nortestosterone-17beta-sulphate. The detection of 19-nortestosterone in urine from untreated animals has led to it being considered a naturally occurring steroid in the male horse. Recently, we have demonstrated that the majority of the 19-nortestosterone found in extracts of 'normal' urine from male horses arises as an artefact through decarboxylation of the 19-carboxylic acid of testosterone. The aim of this investigation was to establish if direct analysis of 19-nortestosterone-17beta-sulphate by liquid chromatography/tandem mass spectrometry (LC/MS/MS) had potential for the detection of 19-nortestosterone misuse in the male horse. The high concentrations of sulphate conjugates of the female sex hormones naturally present in male equine urine were overcome by selective hydrolysis of the aryl sulphates using glucuronidase from Helix pomatia; this was shown to have little or no activity for alkyl sulphates such as 19-nortestosterone-17beta-sulphate. The 'free' phenolic steroids were removed by solid-phase extraction (SPE) prior to LC/MS/MS analysis. The method also allowed for the quantification of the sulphate conjugate of boldenone, a further anabolic steroid endogenous in the male equine with potential for abuse in sports. The method was applied to the quantification of these analytes in a population of samples. This paper reports the results of that study along with the development and validation of the LC/MS/MS method. The results indicate that while 19-nortestosterone-17beta-sulphate is present at low levels as an endogenous substance in urine from 'normal' male horses, its use as an effective threshold substance may be viable. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The applicability of liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the detection of the free anabolic steroid fraction in human urine was examined. Electrospray ionization (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization methods were optimized regarding eluent composition, ion source parameters and fragmentation. The methods were compared with respect to specificity and detection limit. Although all methods proved suitable, LC/ESI-MS/MS with a methanol-water gradient including 5 mM ammonium acetate and 0.01% acetic acid was found best for the purpose. Multiple reaction monitoring allowed the determination of steroids in urine at low nanogram per milliliter levels. LC/MS/MS exhibited high sensitivity and specificity for the detection of free steroids and may be a suitable technique for screening for the abuse of anabolic steroids in sports.  相似文献   

16.
Boldione (1,4-androstadiene-3,17-dione) is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. This work was undertaken to determine and characterize boldione and its metabolites in human urine, using both liquid chromatography with electrospray ionization mass spectrometry and gas chromatography with mass spectrometry and derivatization. Boldione and its three metabolites were detected in dosed human urine after dosing a healthy volunteer with 100 mg boldione. The excretion studies showed that boldione and its metabolites were detectable in urine for 48 h after oral administration, with maximum excretion rates after 1.8 and 3.6 h (boldenone case). The amounts of boldione and boldenone excreted in urine from this 100 mg dose were 34.45 and 15.95 mg, respectively.  相似文献   

17.
An unknown heptabarbital metabolite, observed in the liquid chromatogram of rat plasma and urine samples after administration of heptabarbital, was identified by liquid chromatography-thermospray tandem mass spectrometry. By applying the parent scan mode for screening and the daughter scan mode for structure elucidation, the metabolite was determined to be 5-ethyl-5-(1'-, 3'- or 6'-cycloheptadienyl)barbituric acid. It was demonstrated that artefact formation occurred when hydrochloric acid was used for conjugate hydrolysis in the sample clean-up. Identification of the artefacts was achieved by the same method. Confirmation of the structures of the metabolite and the artefacts was obtained by gas chromatography-electron impact mass spectrometry.  相似文献   

18.
A study of excretion in human urine of ecdysterone, which is the active component of several over-the-counter supplements such as "Ecdysten", reportedly used by athletes, is presented. The study was performed after oral administration of 20 mg of ecdysterone. The collected urine samples were prepared using the standard screening extraction procedure for the free and conjugated fraction of anabolic steroids, and analyzed by gas chromatography (GC) coupled with quadrupole mass spectrometry (MS) and also with high-resolution mass spectrometry (HRMS). Two ecdysterone metabolites were identified and detected along with unchanged ecdysterone. Accurate mass measurements were made for diagnostic ions, including the molecular ion of the main metabolite of ecdysterone, deoxyecdysone, which, to our knowledge, has not previously been reported in the literature. These accurate mass measurements support the proposed fragmentation scheme.  相似文献   

19.
Regularly new anabolic steroids appear on the black market. In most cases these substances are marketed on websites or are confiscated during inspections. 1,(5alpha)-Androstene-17beta-ol-3-one, also known as 1-testosterone, is one of these substances presented to body-builders as a nutritional supplement or a pro-hormone. 1-Testosterone closely resembles the natural hormone testosterone except for a 1,2-double bound instead of a 4,5-double bound. 1-Androstene-3beta,17beta-diol is transformed into 1-testosterone after oral administration. 1-Testosterone, 1-androstene-3beta,17beta-diol and some other related 'new' anabolic steroids were studied with gas chromatography coupled to mass spectrometry (GC-MS) and Liquid chromatography coupled to tandem mass spectrometry (LC-MS2) methods. Similarities in spectra to known analytes, which may lead to pitfalls in the interpretation of the derivatised analytes, are discussed.  相似文献   

20.
Inductively coupled plasma mass spectrometry (ICPMS) has been used to determine the rate and routes of excretion of bromine following the intraperitoneal administration (50 mg kg(-1)) of 2-, 3- and 4-bromobenzoic acids to male bile-duct-cannulated rats. Analysis of urine and bile for (79/81)Br using ICPMS showed that all three bromobenzoic acids were rapidly excreted (82-98%) within 48 h of dosing, primarily via the urine. High-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICPMS) was then used to obtain metabolite profiles for bile and urine. These profiles revealed that extensive metabolism had taken place, with the unchanged bromobenzoic acids forming a minor part of the total of compound-related material detected. Concomitant MS studies, supplemented by alkaline hydrolysis, enabled the identification of the major metabolite of all three of the bromobenzoic acids as a glycine conjugate. Ester glucuronide conjugates were also identified, but formed only a small proportion of total.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号