首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy and synchrotron x-ray diffraction measurements of ammonia (NH(3)) in laser-heated diamond anvil cells, at pressures up to 60 GPa and temperatures up to 2500 K, reveal that the melting line exhibits a maximum near 37 GPa and intermolecular proton fluctuations substantially increase in the fluid with pressure. We find that NH(3) is chemically unstable at high pressures, partially dissociating into N(2) and H(2). Ab initio calculations performed in this work show that this process is thermodynamically driven. The chemical reactivity dramatically increases at high temperature (in the fluid phase at T > 1700 K) almost independent of pressure. Quenched from these high temperature conditions, NH(3) exhibits structural differences from known solid phases. We argue that chemical reactivity of NH(3) competes with the theoretically predicted dynamic dissociation and ionization.  相似文献   

2.
We have determined the melting temperature of formic acid (HCOOH) as a function of pressure to 8.5 GPa using infrared absorption spectroscopy, Raman spectroscopy and visual observation of samples in a resistively heated diamond-anvil cell. The experimentally determined incongruent melting curve compares favorably with a two-phase thermodynamic model. Decomposition reactions were observed above the melting temperature up to a pressure of 6.5 GPa, with principal products being CO2, H2O, and CO. At pressures above 6.5 GPa, decomposition led to reaction products that could be quenched as solids to zero pressure, and infrared and Raman spectra indicate that pressure leads to the presence of sp3 carbon-carbon bonding in these reaction products.  相似文献   

3.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

4.
Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.  相似文献   

5.
In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P4(3)2(1)2) is preferred in a narrow pressure range of 4-7 GPa. Phase III (P2(1)/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P2(1) at 0 GPa; P2(1)/c at high pressure) comes into play, slightly more stable than phase III in the range of 50-80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P2(1)/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C(6)H(6))(2) dimers are predicted.  相似文献   

6.
Solid sulfur dioxide was investigated by vibrational spectroscopy over a broad pressure and temperature range, extending to 32.5 GPa at 75-300 K in diamond anvil cells. Synchrotron infrared spectra provided the first measurements of the pressure dependence of the lattice modes in the far-IR region. Below 17.5 GPa, two fundamentals exhibit splittings enhanced by pressure. The asymmetric stretching mode of SO(2) exhibits a remarkable pressure-induced softening. The observations are consistent with the ambient pressure Raman measurements indicating that SO(2) crystallizes in an acentric cell, but are inconsistent with a previously proposed interpretation that the structure of the high-pressure phase consists of (SO(2))(3) clusters. Dramatic changes in the Raman spectra are found above 17.5 GPa at room temperature. These indicate major changes in structure and possible formation of SO(2) clustering with an enlarged unit cell. The behavior at low temperature differs from that at room temperature. These findings provide constraints on the phase diagram of sulfur dioxide.  相似文献   

7.
The pressure evolution of the vibrational spectrum of polyethylene was investigated up to 50 GPa along different isotherms by Fourier-transform infrared and Raman spectroscopy and at 0 K by density-functional theory calculations. The infrared data allow for the detection of the orthorhombic Pnam to monoclinic P2(1)∕m phase transition which is characterized by a strong hysteresis both on compression and decompression experiments. However, an upper and lower boundary for the transition pressure are identified. An even more pronounced hysteresis is observed for the higher-pressure transition to the monoclinic A2/m phase. The hysteresis does not allow in this case the determination of a well defined P-T transition line. The ambient structural properties of polyethylene are fully recovered after compression/decompression cycles indicating that the polymer is structurally and chemically stable up to 50 GPa. A phase diagram of polyethylene up to 50 GPa and 650 K is proposed. Analysis of the pressure evolution of the Davydov splittings and of the anomalous intensification with pressure of the IR active wagging mode provides insight about the nature of the intermolecular interactions in crystalline polyethylene.  相似文献   

8.
Raman spectroscopic analysis is performed on WO3 nanowires at room temperature at pressures from ambient conditions to 45 GPa. Linear dependence of the first‐order Raman signal on various high‐pressure (HP) sections is observed. Upon increasing the applied pressure, the WO3 nanowires undergo four phase transitions at pressures around 1.7, 4.6, 21.5, and 26.2 GPa, which are all less than that reported for bulk WO3. When the pressure is up to 42.5 GPa, a new high‐pressure phase (HP5) appears. This phase has never been reported and is not reversible while unloading the pressure.  相似文献   

9.
X-ray irradiation was found to convert H(2)O at pressures above 2 GPa into a novel molecular H(2)-O(2) compound. We used optical Raman spectroscopy to explore the behavior of x-ray irradiated H(2)O samples as a function of pressure, time, and composition. The compound was found to be stable over a period of two years, as long as high pressure conditions (>2 GPa) were maintained. The Raman shifts for the H(2) and O(2) vibrons behaved differently from pure H(2) and O(2) as pressure was increased on the compound up to 70 GPa, indicating that it remains a distinct, molecular compound. Based on spectra taken from different locations in a single sample, it appears that multiple forms of the H(2)-O(2) compound exist. The structure and composition of the starting material plays an important role in compound formation, as we found that hydrogen-filled ice clathrate C(2) (H(2))H(2)O did not undergo the same dissociation as observed in ice VII upon x-ray irradiation until pressure was increased to above 10 GPa.  相似文献   

10.
This paper reports an experimental study about the pressure dependence of the vibrational modes of tricosane paraffin (C23H48) investigated by in situ Raman and infrared spectroscopy in a diamond anvil cell (DAC). The main vibrational bands were followed up to 11 GPa and the observed behavior indicated a conformational disorder induced by pressure, corresponding to a transition from ordered to disordered state of the linear chains from 2 to 5 GPa followed by a transition to an amorphous state under pressure above 5 GPa. However, this behavior was reversible after compression–decompression cycle showing that this linear compound was structurally and chemically stable up to 11 GPa at room temperature.  相似文献   

11.
Summary Using a high pressure X-ray camera Cu2HgI4 was subjected at room temperature to pressures up to about 8 GPa. A hexagonal high pressure phase (a=8.28 (2) Å,c=3.40 (0) Å, space group P lm,Z=1) could be detected. This phase shows a reversible transformation with pressure hysteresis. The transition occurs at 7 GPa when the pressure is increased but at 6 GPa when the pressure is decreased.
Hexagonale Hochdruckphase von Kupfer(I)tetraiodomercurat (Cu2HgI4)
Zusammenfassung Cu2HgI4 wurde in einer Hochdruckkamera bei Raumtemperatur mit einem Druck bis zu 8 GPa belastet. Dabei bildete sich eine hexagonale Hochdruckmodifikation (a=8.28 (2) Å,c=3.40 (0) Å, Raumgruppe P lm,Z=1). Für diese Phase wurde eine reversible Umwandlung mit Druckhysterese festgestellt. Mit steigendem Druck findet die Umwandlung bei 7 GPa mit sinkendem Druck jedoch bei 6 GPa statt.
  相似文献   

12.
Raman scattering and x-ray diffraction studies of CaSnO(3) perovskite were performed under high-pressure conditions. This high-pressure study was motivated by a recent theoretical study predicting a phase transition in CaSnO(3) from GdFeO(3)-type perovskite to CaIrO(3)-type structure occurred at 12 GPa. Despite no obvious structure change up to a pressure of 26 GPa based on the x-ray diffraction data, high pressure Raman measurements revealed that some Raman modes disappeared upon compression; either merging into neighboring bands or vanishing. The signals for these Raman peaks were recovered during decompression. The measured pressure derivative of Raman shift (?ν∕?P) of CaSnO(3) ranged from ~1.29 to ~4.35, up to 20 GPa. Due to the lack of lattice dynamic study for CaSnO(3) perovskite, the mode symmetry for CaSnO(3) was tentatively assigned based on the empirical relation among Ca-bearing perovskites. The pressure derivative of the Raman shifts was found to be related to their mode vibrations: modes related to Ca and O shifts had a strong pressure dependence compared with those associated with oxygen octahedral rotation.  相似文献   

13.
The layered-sheet architecture of the crystal structure of the fluoro-substituted oxobenzene-bridged bisdithiazolyl radical FBBO affords a 2D π-electronic structure with a large calculated bandwidth. The material displays high electrical conductivity for a f = 1/2 system, with σ(300 K) = 2 × 10(-2) S cm(-1). While the conductivity is thermally activated at ambient pressure, with E(act) = 0.10 eV at 300 K, indicative of a Mott insulating state, E(act) is eliminated at 3 GPa, suggesting the formation of a metallic state. The onset of metallization is supported by infrared measurements, which show closure of the Mott-Hubbard gap above 3 GPa.  相似文献   

14.
Guo Q  Zhao Y  Jiang C  Mao WL  Wang Z  Zhang J  Wang Y 《Inorganic chemistry》2007,46(15):6164-6169
Cubic Er(2)O(3) was compressed in a symmetric diamond anvil cell at room temperature and studied in situ using energy-dispersive X-ray diffraction. A transition to a monoclinic phase began at 9.9 GPa and was complete at 16.3 GPa and was accompanied by a approximately 9% volume decrease. The monoclinic phase was stable up to at least 30 GPa and could be quenched to ambient conditions. The normalized lattice parameter compression data for both phases were fit to linear equations, and the volume compression data were fit to third-order Birch-Murnaghan equations of state. The zero-pressure isothermal bulk moduli (B(0)) and the first-pressure derivatives (B(0)') for the cubic and monoclinic phases were 200(6) GPa and 8.4 and also 202(2) GPa and 1.0, respectively. Ab initio density functional theory calculations were performed to determine optimized lattice parameters and atom positions for the cubic, monoclinic, and hexagonal phases of Er(2)O(3). The calculated X-ray spectra and predicted transition pressure are in good qualitative agreement with the experimental results.  相似文献   

15.
We performed ab initio molecular dynamics simulations to investigate initial decomposition mechanisms and subsequent chemical processes of β‐HMX (cyclotetramethylene tetranitramine) (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine) crystals at high temperature coupled with high pressures. It was found that the initial decomposition step is the simultaneous C–H and N–NO2 bond cleavage at 3,500 K. When the pressure (1–10 GPa) is applied, the first reaction steps are primarily the C–N and C–H bond fission at 3,500 K. The C–H bond cleavage is a triggering decomposition step of the HMX crystals at 3,500 K coupled with 16 GPa. This indicates that the C–H bonds are much easier to be broken and the hydrogen radicals are much more active. The applied pressures (1–10 GPa) accelerate the decompositions of HMX at 3,500 K. The decomposition pathways and time evolution of the main chemical species demonstrate that the temperature is the foremost factor that affects the decomposition at high pressures (1–10 GPa). However, the decomposition of HMX is dependent on both the temperature (3,500 K) and the pressure (16 GPa). This work will enrich the knowledge of the decompositions of condensed energetic materials under extreme conditions.  相似文献   

16.
High-pressure structural phase transitions in NaNiF(3) and NaCoF(3) were investigated by conducting in situ synchrotron powder X-ray diffraction experiments using a diamond anvil cell. The perovskite phases (GdFeO(3) type) started to transform into postperovskite phases (CaIrO(3) type) at about 11-14 GPa, even at room temperature. The transition pressure is much lower than those of oxide perovskites. The anisotropic compression behavior led to heavily tilted octahedra that triggered the transition. Unlike oxide postperovskites, fluoropostperovskites remained after decompression to 1 atm. The postperovskite phase in NaCoF(3) broke down into a mixture of unknown phases after laser heating above 26 GPa, and the phases changed into amorphous ones when the pressure was released. High-pressure and high-temperature experiments using a multianvil apparatus were also conducted to elucidate the phase relations in NaCoF(3). Elemental analysis of the recovered amorphous samples indicated that the NaCoF(3) postperovskite disproportionated into two phases. This kind of disproportionation was not evident in NaNiF(3) even after laser heating at 54 GPa. In contrast to the single postpostperovskite phase reported in NaMgF(3), such a postpostperovskite phase was not found in the present compounds.  相似文献   

17.
We present two colorimetric procedures for the determination of cyanuric acid, using silver nanoparticle-based (AgNPs) probes. The first is making use of melamine-modified AgNPs which bind to cyanuric acid through hydrogen bonding to form a large conjugate network that enhances the aggregation of AgNPs to produce an absorbance peak at 640 nm and a green coloration. In the second assay, melamine is directly added to the sample in order to form a stable complex with cyanuric acid. AgNPs are then added, resulting in the formation of an absorbance peaking at 525 nm and a color change from green (blank sample) to purple or orange-red as a function of cyanuric acid concentration. Matrix effects, that originate from the interaction of alkaline earth metals with the charged surface of the AgNPs, are mitigated through a matrix-matched calibration. In this manner, spectral transitions can be selectively attributed to the concentration of cyanuric acid, which can be even visually quantified at low mg L?1 levels with minimum sample pre-treatment and without sophisticated instrumentation.
Figure
Two colorimetric procedures for the determination of cyanuric acid, using silver nanoparticle-based (AgNPs) probes are presented. Matrix effects, which originate from the interaction of alkaline earth metals with the charged surface of the AgNPs, are mitigated through a matrix-matched calibration. In this manner, spectral transitions can be selectively attributed to the concentration of cyanuric acid, which can be visually quantified at low mg L?1 levels with minimum sample pre-treatment and no sophisticated instrumentation.  相似文献   

18.
The structural and chemical properties of the bi-molecular, hydrogen-bonded, nitrogen-rich energetic material triaminoguanidinium 1-methyl-5-nitriminotetrazolate C(3)H(12)N(12)O(2) (TAG-MNT) have been investigated at room pressure and under high pressure isothermal compression using powder x-ray diffraction and Raman and infrared spectroscopy. A stiffening of the equation of state and concomitant structural relaxation between 6 and 14 GPa are found to correlate with Raman mode disappearances, frequency discontinuities, and changes in the pressure dependence of modes. These observations manifest the occurrence of a reversible martensitic structural transformation to a new crystalline phase. The onset and vanishing of Fermi resonance in the nitrimine group correlate with the stiffening of the equation of state and phase transition, suggesting a possible connection between these phenomena. Beyond 15 GPa, pressure induces irreversible chemical reactions, culminating in the formation of a polymeric phase by 60 GPa.  相似文献   

19.
The nanoporous metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2(H2O)3.{guest} exhibits anomalous compression under applied pressure that is associated with the hyper-filling of the pore network. This behavior involves a dramatic transition between a "hard" regime (bulk modulus, Khard approximately 118 GPa), where the pressure-transmitting fluid penetrates the framework cavities, and a "soft" regime (Ksoft approximately 30 GPa), where the guest-framework system compresses concertedly. Not only is the duality in compressibility triggered by the availability of potential guests but the size/penetrability of the guest molecules determines the pressure at which the hard-soft transition occurs. Specifically, the observed compression behavior depends on the size of the pressure-transmitting fluid molecules, the sample particle size (i.e., the extent of the pore network), and the rate at which the pressure is increased. The unprecedented pressure-induced phenomena documented here, illustrates the exotic high-pressure behaviors possible in this versatile class of advanced functional materials with broad implications for their structure-function relationships and accordingly their practical application.  相似文献   

20.
The high-pressure reactivity of isoprene has been studied at room temperature up to 2.6 GPa by using the diamond anvil cell technique in combination with Fourier transform infrared spectroscopy. Both dimerization and polymerization reactions take place above 1.1 GPa. At this pressure, the two processes are well separated in time, the dimerization being the only one occurring in the first 150 h. Both processes simultaneously occur as the pressure increases. The reaction product is composed of a volatile fraction, identified as sylvestrene, and a transparent rubberlike solid formed by cis-1,4- and 3,4-polyisoprene. The activation volume of the dimerization reaction has been obtained from the kinetic data. The photoinduced reaction, studied at room temperature for two different pressures, takes place through a two-photon absorption process, and the threshold pressure is lowered to 0.5 GPa. At this pressure, both the dimerization and polymerization processes occur, but the dimerization is not as selective as in the purely pressure-induced reaction. 4-Ethenyl-2,4-dimethylcyclohexene is obtained in addition to sylvestrene. By increasing the pressure, the photoinduced reaction becomes more selective, and the monomer is quantitatively transformed into the same polymer obtained in the purely pressure-induced reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号