首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent paper by Mehra has considered the design of optimal inputs for linear system identification. The method proposed involves the solution of homogeneous linear differential equations with homogeneous boundary conditions. In this paper, a method of solution is considered for similar-type problems with nonhomogeneous boundary conditions. The methods of solution are compared for the homogeneous and nonhomogeneous cases, and it is shown that, for a simple numerical example, the optimal input for the nonhomogeneous case is almost identical to the homogeneous optimal input when the former has a small initial condition, terminal time near the critical length, and energy input the same as for the homogeneous case. Thus tentatively, solving the nonhomogeneous problem appears to offer an attractive alternative to solving Mehra's homogeneous problem.  相似文献   

2.
We consider existence and uniqueness properties of a solution to homogeneous cone complementarity problem. Employing an algebraic characterization of homogeneous cones due to Vinberg from the 1960s, we generalize the properties of existence and uniqueness of solutions for a nonlinear function associated with the standard nonlinear complementarity problem to the setting of homogeneous cone complementarity problem. We provide sufficient conditions for a continuous function so that the associated homogeneous cone complementarity problems have solutions. In particular, we give sufficient conditions for a monotone continuous function so that the associated homogeneous cone complementarity problem has a unique solution (if any). Moreover, we establish a global error bound for the homogeneous cone complementarity problem under some conditions.  相似文献   

3.
A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 506–522, 2012  相似文献   

4.
球体的弹性动力学解和动应力集中现象   总被引:1,自引:0,他引:1  
本文提出了一种解析方法求解球体的弹性动力学问题.将球体弹性动力学基本解,分解为一个满足给定非齐次混合边界条件的准静态解和一个仅满足齐次混合边界条件的动态解的叠加.利用变量替换将动态解需满足的动态方程变换为贝塞尔方程,并通过定义一个有限汉克尔变换,就可以容易地求得非齐次动态方程的动态解,从而,得到球体弹性动力学的精确解.从计算结果中可以发现,在冲击外压作用下的球体圆心处具有动应力集中现象,并导致很高的动应力峰值,这对球体的动强度研究有一定的实际意义.  相似文献   

5.
钱小吾 《大学数学》2008,24(2):158-162
常系数齐次线性差分方程组的求解方法,已有作者讨论过,但都没有给出一个比较简便的计算方法.本文将给出一个十分简明而有效的常系数齐次线性差分方程组的新求解方法.  相似文献   

6.
王黎辉 《大学数学》2006,22(5):146-149
利用构造法构造二阶变系数线性齐次微分方程及其解,根据这种方法也能求得某些二阶变系数线性齐次微分方程的非零解,并给出了二阶变系数线性齐次微分方程存在非零解的充要条件.  相似文献   

7.
We study the existence of a regular (classical) solution of the Tricomi problem for the Lavrent’ev-Bitsadze equation with mixed boundary conditions. We find conditions under which the homogeneous problem has only the zero solution and give an example in which the homogeneous Tricomi problem has a nonzero solution. We also study the solvability of the inhomogeneous Tricomi problem.  相似文献   

8.
《Optimization》2012,61(3):231-239
The aim of this work was to study the solution maps in the vector homogeneous quasi-equilibrium problems. Here, we establish some sufficient and necessary conditions for upper semicontinuity of the solution maps in the vector homogeneous quasi-equilibrium problems. The results presented extend and improve the preceding results of Oetlli and Yen [Oetlli, W. and Yen, N.D., 1995, Continuity of the solution set of homogeneous equilibrium problems and linear complementarity problems. In: F. Giannessi and A. Maugeri (Eds) Variational Inequalities and Network Equilibrium Problems (New York: Plenum Press)].  相似文献   

9.
We obtain an integral representation of the solution of the Laplace equation with three distinct boundary conditions. Depending on the statement of the problem, the homogeneous boundary value problem may have nontrivial solutions; in other cases, the solution of the homogeneous problem is zero. Note that the inhomogeneous problem is always solvable.  相似文献   

10.
We study convolution solutions of an abstract stochastic Cauchy problem with the generator of a convolution operator semigroup. In the case of additive noise, we prove the existence and uniqueness of a weak convolution solution; this solution is described by a formula generalizing the classical Cauchy formula in which the solution operators of the homogeneous problem are replaced by the convolution solution operators of the homogeneous problem. For the problem with multiplicative noise, we find a condition under which the weak convolution solution coincides with the soft solution and indicate a sufficient condition for the existence and uniqueness of a weak convolution solution; the latter can be obtained by the successive approximation method.  相似文献   

11.
We present necessary and sufficient conditions for the existence of a homogeneous solution for a class of partial differential equations with a homogeneous random perturbation in a Banach space.  相似文献   

12.
A semianalytical approach to nonlinear fluid film forces of a hydrodynamic journal bearing with two axial grooves under the cavitation boundary condition is proposed. The pressure distribution of the Reynolds equation of a finitely long journal bearing with axial grooves is expressed as a particular solution and a homogeneous solution. The particular solution and the homogeneous solution are separated, respectively, into an additive form and a multiplicative form by the method of separation of variables. The circumferential separable function of the homogeneous solution can be expanded on the basis of the infinite series of trigonometric functions. The pressure distribution of the particular solution is obtained by the Sommerfeld transformation. The termination positions of the fluid film are determined by the continuity condition. The analytical expressions for the nonlinear fluid film forces of a finitely long journal bearing with two axial grooves are obtained. The fluid film forces calculated by the proposed method agree well with the results obtained by the finite-difference method. The effects of the bearing parameters on the nonlinear fluid film forces are analyzed.  相似文献   

13.
In this paper we consider the discretized version of the wave equation, in which a manifold is replaced by a homogeneous tree and the time line is replaced by the natural numbers. We give two methods for finding a closed form of the solution. One of these methods is found by first solving the Radon transform of the solution, which has a much simpler form. We also find a simple formula for the Radon transformation of the solution to the heat equation on homogeneous trees.  相似文献   

14.
A coupled system of integral equations (of the domain and boundary types) is formulated for the elastodynamic response analysis of a locally inhomogeneous body on a homogeneous elastic half-space. The method uses the fundamental solution for homogeneous elastostatics in the inhomogeneous domain owing to the lack of a fundamental solution in inhomogeneous elastodynamics.

The integral representation of displacements in the inhomogeneous domain is formulated with the help of this elastostatic fundamental solution by considering the term induced by the inhomogeneity of materials and the acceleration term as the body force term. Then the Green's matrix is obtained numerically from this integral representation and combined with the ordinary boundary integral equations, which are valid in the exterior homogeneous half-space.

Some numerical examples show the efficiency and the versatility of this coupled method.  相似文献   


15.
We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.  相似文献   

16.
Using the notion of fundamental solution, we obtain a solution to the Cauchy problem for a multidimensional homogeneous linear difference equation with constant coefficients.  相似文献   

17.
In this paper we provide sufficient conditions for the existence of solutions to multipoint boundary value problems for nonlinear ordinary differential equations. We consider the case where the solution space of the associated linear homogeneous boundary value problem is less than 2. When this solution space is trivial, we establish existence results via the Schauder Fixed Point Theorem. In the resonance case, we use a projection scheme to provide criteria for the solvability of our nonlinear boundary value problem. We accomplish this by analyzing a link between the behavior of the nonlinearity and the solution set of the associated linear homogeneous boundary value problem.  相似文献   

18.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

19.
Solution oscillations, often caused by identical solutions to the homogeneous subproblems, constitute a severe and inherent disadvantage in applying Lagrangian relaxation based methods to resource scheduling problems with discrete decision variables. In this paper, the solution oscillations caused by homogeneous subproblems in the Lagrangian relaxation framework are identified and analyzed. Based on this analysis, the key idea to alleviate the homogeneous oscillations is to differentiate the homogeneous subproblems. A new algorithm is developed to solve the problem under the Lagrangian relaxation framework. The basic idea is to introduce a second-order penalty term in the Lagrangian. Since the dual cost function is no longer decomposable, a surrogate subgradient is used to update the multiplier at the high level. The homogeneous subproblems are not solved simultaneously, and the oscillations can be avoided or at least alleviated. Convergence proofs and properties of the new dual cost function are presented in the paper. Numerical testing for a short-term generation scheduling problem with two groups of identical units demonstrates that solution oscillations are greatly reduced and thus the generation schedule is significantly improved.  相似文献   

20.
Salimov  R. B.  Shabalin  P. L. 《Mathematical Notes》2003,73(5-6):680-689
In this paper, we obtain a generalization of the method of regularizing multipliers for the solution of the Hilbert boundary-value problem with finite index in the theory of analytic functions to the case of an infinite power-behaved index. This method is used to obtain a general solution of the homogeneous Hilbert problem for the half-plane, a solution that depends on the existence and the number of entire functions possessing mirror symmetry with respect to the real axis and satisfying some additional constraints related to the singularity characteristic of the index. To solve of the inhomogeneous problem, we essentially use a specially constructed solution of the homogeneous problem whereby we reduce the boundary condition of the Hilbert problem to a Dirichlet problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号