首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe and apply a scheme to obtain nuclear magnetic resonance (NMR) signals from multiple regions in space with a single pulse sequence in systems with strong, usually unavoidable, gradient magnetic fields. This is accomplished with multiple frequency irradiation and reception. Applications described include dual-slice NMR of a fluid to enhance S/N, T 2 measurements of two different samples, and efficient T 1 measurement sequence by interleaving shorter delays within a longer delay for different slices.  相似文献   

2.
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times (T1 and T2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T1 and T2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.  相似文献   

3.
Superconducting structures Pb–PG formed by filling a porous glass matrix with the lead from melt under pressure have been investigated. Samples with characteristic pore structure diameters of d ≈ 7, 3, and 2 nm have been studied. It has been found that the critical temperature of the superconducting transition in the samples under study is similar to the corresponding value Tc ≈ 7.2 K for bulk lead. At the same time, it has been observed that the critical magnetic field of the nanocomposites, which attains Hc(T = 0 K) ≈ 165 kOe for Pb–PG (3 nm), exceeds several times the value Hc(0) = 803 Oe for bulk lead. The low-temperature magnetic- field dependences of magnetic moment M(H) contain quasi-periodic flux jumps, which vanish with a decrease in the lead nanostructure diameter. A qualitative model of the observed effects is considered.  相似文献   

4.
Using nuclear (proton) magnetic resonance relaxometry (NMRR) was studied oil disperse systems. Dependences of NMR–relaxation parameters—spin–lattice T1i, spin–spin T2i relaxation times, proton populations P1i and P2i, and petrophysical correlations were received for light and heavy oils. Experimental results are interpreted on the base of structure-dynamical ordering of oil molecules with structure unit formation.  相似文献   

5.
For the first time, the CuFeO2 single crystal has been studied by 63,65Cu nuclear magnetic resonance (NMR). The measurements have been carried out in the temperature range of T = 100?350 K in the magnetic field H = 117 kOe applied along different crystallographic directions. The components of the electric field gradient tensor and the hyperfine coupling constants are determined. It is shown that electrons of copper 4s and 3d orbitals are involved in the spin polarization transfer Fe → Cu. The occupancies of these orbitals are estimated.  相似文献   

6.
A physical mechanism responsible for the relaxation of nuclear spins coupled by the hyperfine interaction to relaxed electron spins in materials with spin ordering is proposed. The rate of such induced nuclear spin relaxation is proportional to the dynamic shift of the nuclear magnetic resonance (NMR) frequency. Therefore, its maximum effect on the NMR signal should be expected in the case of nuclear spin waves existing in the system. Our estimates demonstrate that the induced relaxation can be much more efficient than that occurring due to the Bloch mechanism. Moreover, there is a qualitative difference between the induced and Bloch relaxations. The dynamics of nuclear spin sublattices under conditions of the induced relaxation is reduced to the rotation of m1 and m2 vectors without any changes in their lengths (m 1 2 (t) = m 2 2 (t) = m 0 2 (t)= const). This means that the excitation of NMR signals by the resonant magnetic field does not change the temperature T n of the nuclear spin system. This is a manifestation of the qualitative difference between the induced and Bloch relaxations. Indeed, for the latter, the increase in T n accompanying the saturation of NMR signals is the dominant effect.  相似文献   

7.
Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.  相似文献   

8.
The spin susceptibility of a polycrystalline sample of uranium mononitride UN is studied by measuring the 14N NMR line shift, spin–lattice relaxation rates of the nuclear spin, and static magnetic susceptibility in the temperature region of 1.5TN < T < 7TN A joint analysis of the results obtained has revealed the temperature dependence of the characteristic energy of spin fluctuations of the uranium 5f electrons: Γnmr(T) ∝ T0.54(4) close to the dependence Γ(T) ∝ T0.5 characteristic of concentrated Kondo systems above the coherent state formation temperature.  相似文献   

9.
The pulsed nuclear magnetic resonance (NMR) method at a proton frequency of 25 MHz at temperatures of 22–160°C is used to detect the transverse magnetization decay in polyisoprene rubbers with various molecular masses, to determine the NMR damping time T 2, and to measure spin-lattice relaxation time T 1 and time T 2eff of damping of solid-echo signals under the action of a sequence of MW-4 pulses modified by introducing 180° pulses. The dispersion dependences of T 2eff obtained for each temperature are combined into one using the temperature-frequency equivalence principle. On the basis of the combined dispersion dependence of T 2eff and the data on T 2 and T 1, the correlation time spectrum of molecular movements is constructed. Analysis of the shape of this spectrum shows that the dynamics of polymer molecules can be described in the first approximation by the Doi-Edwards tube-reptation model.  相似文献   

10.
In analysis of transverse relaxation time (T 2) curves in a Carr-Purcell-Meiboom-Gill (CPMG) experiment in a multicomponent system originating from measurements of oil and water in rock cores, where internal magnetic field gradients broaden the line widths significantly, there is very little direct information to be extracted of the different components contributing to the totalT 2 relaxation time curve. From the study of rock cores saturated with different amounts of crude oil and water, we show that with an optimised experimental setup it is possible to extract information from the nuclear magnetic resonance response that is not resolved by any other methods. This setup combines pulsed field gradient methods with the CPMG experiment utilizing data from both rock cores and bulk oil and water. Then it becomes feasible to separate the signals from oil and water where the two-dimensional inverse Laplace transform ordinarily seems to fail.  相似文献   

11.
Mössbauer spectroscopy is used to study the FeVO4 multiferroic, which undergoes two magnetic phase transitions at T N1 ≈ 22 K and T N2 ≈ 15 K. The first transition (T N1) is related to transformation from a paramagnetic state into a magnetically ordered state of a spin density wave, and the second transition (T N2) is associated with a change in the type of the spatial magnetic structure of the vanadate. The electric field gradient tensor at 57Fe nuclei is calculated to perform a crystal-chemical identification of the partial Mössbauer spectra corresponding to various crystallographic positions of Fe3+ cations. The spectra measured in the range T N2 < T < T N1 are analyzed on the assumption about amplitude modulation of the magnetic moments of iron atoms μFe. The results of model intersection of the spectra recorded at T < T N2 point to a high degree of anharmonicity of the helicoidal magnetic structure of the vanadate and to elliptic polarization of μFe. These features are characteristic of type-II multiferroics. The temperature dependences of the hyperfine interaction parameters of 57Fe nuclei that were obtained in this work are analyzed in terms of the Weiss molecular field model on the assumption of orbital contribution to the magnetic moments of iron cations.  相似文献   

12.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

13.
14.
The Cr1/3NbS2 magnet is studied by nuclear magnetic resonance (NMR) at 53Cr nuclei in a zero applied magnetic field. The following two frequency ranges are distinguished in the 53Cr NMR spectrum at T = 4.2 K: ν 1 = 64–68 MHz and ν 2 = 49–51 MHz. They can be related to two valence states of chromium ions, namely, Cr4+ and Cr3+. The components of the electric field gradient, the hyperfine fields, and the magnetic moment at chromium atoms are determined. The NMR data demonstrate that the magnetic moments of chromium lie in plane ab and form a magnetic structure consisting of regions with a helicoidal magnetic order and regions where this order is broken.  相似文献   

15.
The contribution of ultraslow self-diffusion of polycrystalline benzene molecules to the spin-lattice relaxation of protons is studied as a function of effective magnetic field H 2 in a doubly rotating frame (DRF). Proton relaxation time T 1ρρ is measured by direct recording of NMR in a rotating frame (RF). The effective fields have a “magic” orientation corresponding to angles arccos(1/√3) in the RF and π/2 in the DRF so that the secular part of the dipole-dipole interactions of protons is suppressed in two orders of perturbation theory, while the nonsecular part becomes predominant. It is found that the diffusion contribution of benzene molecules to proton relaxation time T 1ρρ is a linear function of the square of field H 2 and exhibits all peculiarities typical of the model of strong collisions generalized to only fluctuating nonsecular dipole interactions in fields exceeding the local field. This means that the model can also be employed in the given conditions. It is shown that perfect agreement with such a dependence can also be obtained in the model of weak collisions if we take into account the concept of the locally effective quantization field, whose magnitude and direction are controlled by the vector sum of field H 2, and the nonsecular local field perpendicular to it.  相似文献   

16.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

17.
The magneto-optical Faraday effect was used to measure the spin-lattice relaxation timeT 1 of the rare earth ions Ho and Dy in the ethyl sulfate in the temperature range 1.4≦T≦2.15°K and for magnetic fields between 100 and 5300 oersteds. The magnetic field was pulse modulated and the approach to equilibrium in the spin populations was studied. The measured dependence ofT 1 on the temperature is in good agreement with theory. Cross-relaxation processes have been identified in the holmium ethyl sulfate.  相似文献   

18.
The pore size distributions of four controlled pore glasses and two silica gels with nominal diameters ranging from 6–24 nm were determined by measuring the1H nuclear magnetic resonance (NMR) signal from the nonfrozen fraction of confined cyclohexane as a function of temperature, in steps of ca. 0.1–1 K. The intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of cyclohexane confined in pores with radiusR follows the simplified Gibbs-Thompson equation δT=k p/R with ak p value of 72.4 Knm. To our knowledge, this is the first time that thek p value of cyclohexane has been directly and accurately calibrated by NMR. As expected, thek p value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us by the N2 sorption technique. Although the melting point depression of confined cyclohexane is found to be less than previously assumed, this compound is still one of the most suitable candidates for NMR-based pore size determinations. However, pore sizes larger than approximately 50 nm in diameter will be difficult to determine accurately by NMR unless adsorbates undergoing larger melting point depressions than cyclohexane can be found.  相似文献   

19.
The paramagnetic relaxation in CeCl3 was investigated in the temperature interval between 1.07°K and 4.21°K using a mutual inductance bridge at frequencies between 3 Hz and 3200 Hz. The dependence of the complex susceptibility on temperature below theλ point is given by a Debye function. Above this temperature, however, deviations occur. The temperature dependence of the relaxation time forT<T λ can be described byτT ?n where 1.82≦n≦2.35 for 470 Oe≦H≦3360 Oe. At the highest temperatures Orbach Processes occur over the first excited crystal field component which according to these measurements lies atE II=k(56±10)°K. In the entire temperature range the relaxation processes are determined by further relaxation mechanisms in addition to the spin lattice relaxation. The nature of these could not, however, be determined.  相似文献   

20.
The melting and growth of3He crystals, spin-polarized by an external magnetic field, are different in nature depending on whether the temperature is higher or lower than the characteristic ordering temperatures in the crystal (the Neel temperatureT N ) and in the liquid (the superfluid transition temperatureT c ). In the high-temperature region (T≥T N ,T c ) the liquid which appears upon melting has a high nonequilibrium spin density. In the low-temperature region (T?T N ,T c ) the melting and growth are accompanied by spin supercurrents both in the liquid and in the crystal in addition to mass supercurrents in the liquid. The crystallization waves at the liquid-solid interface should exist in the low-temperature region. With increasing magnetic field the waves change in nature, because the spin currents begin to play a dominant role. The wave spectrum becomes linear with a velocity inversely proportional to the magnetic field. The attenuation of the waves at low enough temperatures is mainly due to the interaction of the moving crystal-liquid interface with thermal spin waves in the crystal. The waves could be weakly damped at temperatures below a few hundreds microkelvins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号