首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Stark-effect splitting of the hyperfine structure of39K19 F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J =±1)-transitions were induced electrically. Completely resolved spectra of KF in theJ=1 rotational state have been measured. The obtained quantities are: The electric dipolmomentμ e l of the molecul forv=0,1 and 2; the rotational magnetic dipolmomentμ J forv=0,1; the difference of the magnetic shielding (σ ? σ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ ? ξ). The numerical values are
$$\begin{array}{*{20}c} {\mu _{e1} = 8,585(4)deb,} \\ {\frac{{(\mu _{e1} )_{\upsilon = 1} }}{{(\mu _{e1} )_{\upsilon = 0} }} = 1,0080,} \\ {{{\mu _J } \mathord{\left/ {\vphantom {{\mu _J } J}} \right. \kern-\nulldelimiterspace} J} = ( - )2352(10) \cdot 10^{ - 6} \mu _B ,} \\ {(\sigma _ \bot - \sigma _\parallel )F = ( - )2,19(9) \cdot 10^{ - 4} ,} \\ {(\sigma _ \bot - \sigma _\parallel )K = ( - )12(9) \cdot 10^{ - 4} ,} \\ {(\xi _ \bot - \xi _\parallel ) = 3 (1) \cdot 10^{ - 30} {{erg} \mathord{\left/ {\vphantom {{erg} {Gau\beta ^2 }}} \right. \kern-\nulldelimiterspace} {Gau\beta ^2 }}} \\ \end{array} $$  相似文献   

2.
In the structure-dynamic approach of nanoionics, the method of a uniform effective field \( {F}_{\mathrm{eff}}^{j,k} \) of a crystallographic planeX j has been substantiated for solid electrolyte nanostructures. The \( {F}_{\mathrm{eff}}^{j,k} \)is defined as an approximation of a non-uniform field \( {F}_{\mathrm{dis}}^j \)of X j with a discrete- random distribution of excess point charges. The parameters of \( {F}_{\mathrm{eff}}^{j,k} \)are calculated by correction of the uniform Gauss field \( {F}_{\mathrm{G}}^j \) of X j . The change in an average frequency of ionic jumps X k ?→?X k?+?1 between adjacent planes of nanostructure is determined by the sum of field additives to the barrier heights η k , k?+?1, and for \( {F}_{\mathrm{G}}^j \) and \( {F}_{\mathrm{dis}}^j \), these sums are the same decimal order of magnitude. For nanostructures with length ~4 nm, the application of \( {F}_{\mathrm{G}}^j \) (as \( {F}_{\mathrm{eff}}^{j,k} \)) gives the accuracy ~20 % in calculations of ion transport characteristics. The computer explorations of the “universal” dynamic response (Reσ ??∝?ω n ) show an approximately the same power n < ≈1 for\( {F}_{\mathrm{G}}^j \) and \( {F}_{\mathrm{eff}}^{j,k} \).  相似文献   

3.
A. S. Moskvin 《JETP Letters》2004,80(11):697-703
Both theoretical considerations and experimental data point to a more complicated nature of the valence hole states in doped cuprates than is predicted by the Zhang-Rice model. Actually, we deal with a competition of a conventional hybrid \({\text{Cu}} {\text{3}}d-{\text{O}} {\text{2}}p b{1g} \propto d{x^2-y^2} \) state and purely oxygen nonbonding state with e u x, yp x, y symmetry. The latter reveals a nonquenched Ising-like orbital moment that gives rise to a novel spinless purely oxygen scenario of the magnetic response in doped cuprates with the oxygen localized orbital magnetic moments of the order of tenths of Bohr magneton. We consider the mechanism of 63, 65Cu-O 2p transferred orbital hyperfine interactions due to the mixing of the oxygen O2p orbitals with Cu3p semicore orbitals. Quantitative estimates point to a large magnitude of the respective contributions to both the local field and electric field gradient, and their correlated character.  相似文献   

4.
Manganese oxides of spinel structure, LiMn2O4, Li1-x Ni x Mn2O4 (0.25 ≤ x≤ 0.75), and NiMn2O4, were studied by EDS, XRD, SEM, magnetic (M-H, M-T), and XPS measurements. The samples were synthesized by an ultrasound-assisted sol-gel method. EDS analysis showed good agreement with the formulations of the oxides. XRD and Rietveld refinement of X-ray data indicate that all samples crystallize in the Fd3m space group characteristic of the cubic spinel structure. The a-cell parameter ranges from a = 8.2276 Å (x = 0) to a = 8.3980 Å (x = 1). SEM results showed particle agglomerates ranging in size from 2.3 μm (x = 0) down to 0.8 μm (x = 1). Hysteresis magnetization vs. applied field curves in the 5–300K range was recorded. ZFC-FC measurements indicate the presence of two magnetic paramagnetic-ferrimagnetic transitions. The experimental Curie constant was found to vary from 5 to 7.1 cm3 K mol?1 for the range of compositions studied (0 ≤ x ≤ 1). XPS studies of these oxides revealed the presence of Ni2+, Mn3+, and Mn4+. The experimental Ni/Mn atomic ratios obtained by XPS were in good agreement with the nominal values. A linear relationship of the average oxidation state of Mn with Ni content was observed. The oxide’s cation distributions as a function of Ni content from x = 0 ?Li+[Mn3+Mn4+]O4 to x = 1 \( {\mathrm{Ni}}_{0.35}^{2+}{\mathrm{Mn}}_{0.65}^{3+}\left[{\mathrm{Ni}}_{0.65}^{2+}\right.\left.{\mathrm{Mn}}_{1.35}^{3+}\right]{\mathrm{O}}_4 \) were proposed.  相似文献   

5.
A differential measurement of the spin rotation of Dy160 in the 2+ rotational state was performed by using liquid sources of TbCl3 solved in 3M HCl and applying an external magnetic field of 33 500 Gauss. No change of the Larmor precession frequency could be detected within the first 10·10?9 s. It is concluded that the ground state of the electronic shell of Dy+++ is reached in 6·10?10 s after theβ-decay of Tb160. The valueg R=+0.364±0.011 was derived using 〈r?3eff=8.92 a. u. for the 4f-shell of Dy+++. A comparison with the result ofCohen who studied the Mössbauer-effect in Fe2Dy shows that the value of 〈r?3eff must be 10% larger in this compound. A measurement of the effective magnetic field at the position of the nucleus in a source of terbium metal was performed for different temperatures. It revealed a temperature dependence which is very similar to the paramagnetic susceptibility χ(T). We observed a strong attenuation ofγ γ-angular correlations in the 2+ rotational state. For liquid sources of TbCl3 solved in 3M HCl the following attenuation parameters were measured:
$$\begin{gathered} \lambda _2 = (0.122 \pm 0.013) \cdot 10^9 {\text{s}}^{ - {\text{1}}} , \hfill \\ \lambda _4 = (0.235 \pm 0.024) \cdot 10^9 {\text{s}}^{ - {\text{1}}} . \hfill \\ \end{gathered}$$  相似文献   

6.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

7.
We find an explicit closed formula for the k’th iterated commutator \({\text{ad}_{A}^{k}}(H_{V}(\xi ))\) of arbitrary order k ? 1 between a Hamiltonian \(H_{V}(\xi )=M_{\omega _{\xi }}+S_{\check V}\) and a conjugate operator \(A=\frac{\mathfrak{i}}{2}(v_{\xi}\cdot\nabla+\nabla\cdot v_{\xi})\), where \(M_{\omega _{\xi }}\) is the operator of multiplication with the real analytic function ω ξ which depends real analytically on the parameter ξ, and the operator \(S_{\check V}\) is the operator of convolution with the (sufficiently nice) function \(\check V\), and v ξ is some vector field determined by ω ξ . Under certain assumptions, which are satisfied for the Yukawa potential, we then prove estimates of the form \(\| {{\text{ad}_{A}^{k}}(H_{V}(\xi ))(H_{0}(\xi )+\mathfrak{i} )}\|\leqslant C_{\xi }^{k}k!\) where C ξ is some constant which depends continuously on ξ. The Hamiltonian is the fixed total momentum fiber Hamiltonian of an abstract two-body dispersive system and the work is inspired by a recent result [3] which, under conditions including estimates of the mentioned type, opens up for spectral deformation and analytic perturbation theory of embedded eigenvalues of finite multiplicity.  相似文献   

8.
In this paper, we discuss the coherence of the reduced state in system H A ?H B under taking different quantum operations acting on subsystem H B . Firstly, we show that for a pure bipartite state, the coherence of the final subsystem H A under the sum of two orthonormal rank 1 projections acting on H B is less than or equal to the sum of the coherence of the state after two orthonormal projections acting on H B , respectively. Secondly, we obtain that the coherence of reduced state in subsystem H A under random unitary channel \({\Phi }(\rho )={\sum }_{s}\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B , is equal to the coherence of the state after each operation \({\Phi }_{s}(\rho )=\lambda _{s}U_{s}\rho U_{s}^{\ast }\) acting on H B for every s. In addition, for general quantum operation \({\Phi }(\rho )={\sum }_{s}F_{s}\rho F_{s}^{\ast }\) on H B , we get the relation
$$ C\left (\left ((I\otimes {\Phi })\rho ^{AB}\right )^{A}\right )\leq \sum \limits _{s}C\left (\left ((I\otimes {\Phi }_{s})\rho ^{AB}\right )^{A}\right ). $$
  相似文献   

9.
The Neumann Schrödinger operator \(\mathcal{L}\) is considered on a thin 2D star-shaped junction, composed of a vertex domain Ωint and a few semi-infinite straight leads ω m , m = 1, 2, ..., M, of width δ, δ ? diam Ωint, attached to Ωint at Γ ? ?Ωint. The potential of the Schrödinger operator l ω on the leads vanishes, hence there are only a finite number of eigenvalues of the Neumann Schrödinger operator L int on Ωint embedded into the open spectral branches of l ω with oscillating solutions χ ±(x, p) = \(e^{ \pm iK_ + x} e_m \) of l ω χ ± = p 2 χ ±. The exponent of the open channels in the wires is
$K_ + (\lambda ) = p\sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = \sqrt \lambda P_ + $
, with constant e m , on a relatively small essential spectral interval Δ ? [0, π 2 δ ?2). The scattering matrix of the junction is represented on Δ in terms of the ND mapping
$\mathcal{N} = \frac{{\partial P_ + \Psi }}{{\partial x}}(0,\lambda )\left| {_\Gamma \to P_ + \Psi _ + (0,\lambda )} \right|_\Gamma $
as
$S(\lambda ) = (ip\mathcal{N} + I_ + )^{ - 1} (ip\mathcal{N} - I_ + ), I_ + = \sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = P_ + $
. We derive an approximate formula for \(\mathcal{N}\) in terms of the Neumann-to-Dirichlet mapping \(\mathcal{N}_{\operatorname{int} } \) of L int and the exponent K ? of the closed channels of l ω . If there is only one simple eigenvalue λ 0 ∈ Δ, L intφ0 = λ 0φ0 then, for a thin junction, \(\mathcal{N} \approx |\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} \) with
$\vec \phi _0 = P_ + \phi _0 = (\delta ^{ - 1} \int_{\Gamma _1 } {\phi _0 (\gamma )} d\gamma ,\delta ^{ - 1} \int_{\Gamma _2 } {\phi _0 (\gamma )} d\gamma , \ldots \delta ^{ - 1} \int_{\Gamma _M } {\phi _0 (\gamma )} d\gamma )$
and \(P_0 = \vec \phi _0 \rangle |\vec \phi _0 |^{ - 2} \langle \vec \phi _0 \),
$S(\lambda ) \approx \frac{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} - I_ + }}{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} + I_ + }} = :S_{appr} (\lambda )$
. The related boundary condition for the components P +Ψ(0) and P +Ψ′(0) of the scattering Ansatz in the open channel \(P_ + \Psi (0) = (\bar \Psi _1 ,\bar \Psi _2 , \ldots ,\bar \Psi _M ), P_ + \Psi '(0) = (\bar \Psi '_1 , \bar \Psi '_2 , \ldots , \bar \Psi '_M )\) includes the weighted continuity (1) of the scattering Ansatz Ψ at the vertex and the weighted balance of the currents (2), where
$\frac{{\bar \Psi _m }}{{\bar \phi _0^m }} = \frac{{\delta \sum\nolimits_{t = 1}^M { \bar \Psi _t \bar \phi _0^t } }}{{|\vec \phi _0 |^2 }} = \frac{{\bar \Psi _r }}{{\bar \phi _0^r }} = :\bar \Psi (0)/\bar \phi (0), 1 \leqslant m,r \leqslant M$
(1)
,
$\sum\limits_{m = 1}^M {\bar \Psi '_m } \bar \phi _0^m + \delta ^{ - 1} (\lambda - \lambda _0 )\bar \Psi /\bar \phi (0) = 0$
(1)
. Conditions (1) and (2) constitute the generalized Kirchhoff boundary condition at the vertex for the Schrödinger operator on a thin junction and remain valid for the corresponding 1D model. We compare this with the previous result by Kuchment and Zeng obtained by the variational technique for the Neumann Laplacian on a shrinking quantum network.
  相似文献   

10.
In the classical collision theory the scattering angle? depends on the impact parameterb and on the kinetic energyE r of the relative motion. This angle?(b, E r ) is expanded for two limiting cases: 1. Expansion in powers of the potentialV(r)/E r (momentum approximation). 2. Expansion in powers of the impact parameterb (central collision approximation). The radius of convergence of the series depends onb andE r . It will be given for the following potentialsV(r):
$$A\left( {\frac{a}{r}} \right)^\mu ;Ae^{ - \frac{r}{a}} ;A\frac{a}{r}e^{ - \frac{r}{a}} ;A\left( {\frac{a}{r}} \right)^2 e^{ - \left( {\frac{r}{a}} \right)^2 } .$$  相似文献   

11.
Two short-lived isomeric states in118Sb have been investigated by the118Sn(p, n),118Sn(d, 2n) and115In(α, n) reactions. The TDPAD method on solid and liquid metallic targets was used to measure the electromagnetic moments of these states. The results of the experiments are: $$\begin{gathered} T_{1/2} = 13.4{\text{ }}(3){\text{ }}ns I^\pi = 3^ - {\text{ }}g = - 1.254(31){\text{ }}|Q| = 0.25{\text{ }}(5){\text{ }}b, \hfill \\ T_{1/2} = 22.8{\text{ }}(4){\text{ }}ns I^\pi = 7^ + {\text{ }}g = + 0.680(18){\text{ }}|Q| > 1.4{\text{ }}b. \hfill \\ \end{gathered}$$ Pure \([\pi 2d_{5/2} \otimes v1h_{1{\text{ }}1/2} ]_{3 - }\) and \([\pi 1g_{9/2}^{ - 1} \otimes v2d_{5/2}^{ - 1} ]_{7 + }\) configurations have been established for the two isomeric states. An experimental evidence concerning the participation of the 1g 9 2/?1 proton shell-model intruder excitation into the positive parity low-lying level structure of the odd-odd118Sb nucleus was obtained.  相似文献   

12.
A few red degraded bands attributable to NS have been reported earlier byFowler andBarker, Dressler andBarrow et al, and they occur in the same region (2300 to 2700 Å) as the bands of the known systems (C 2 +?X 2 П) and (A 2 Δ?X 2 П). Measurements made on the heads of some of these weak bands ledBarrow et al. to believe that these bands may form a system analogous to theβ-system of NO and be due to a2 П-2 П transition. The spectrum of NS has now been studied in a little more detail by means of an uncondensed discharge through dry nitrogen and sulphur vapour in the presence of argon and thirty three bands belonging to this system have been recorded in the region 2280 to 2760 Å. It has been found possible to represent the band heads by means of the equation
$$^v {\text{head}} {\text{ = }} \left. {_{43182 \cdot 5}^{{\text{43311}} \cdot {\text{5}}} } \right\}_{ - [1219 \cdot 20(v'' + \tfrac{1}{2}) - 7 \cdot 48(v'' + \tfrac{1}{2})^2 ].}^{ + [761 \cdot 04(v' + \tfrac{1}{2}) - 5 \cdot 10(v' + \tfrac{1}{2})^2 ]}$$  相似文献   

13.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of23Na19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J=±1)-transitions were induced electrically. Completely resolved spectra of NaF in theJ=1 rotational state have been measured in several vibrational states. The obtained quantities are: The electric dipolmomentμ el of the molecule forv=0, 1 and 2, the rotational magnetic dipolmomentμ J forv=0, 1, the difference of the magnetic shielding (σ -σ ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ -ξ ), the spin rotational constantsc F andc Na, the scalar and the tensor part of the molecular spin-spin interaction, the quadrupol interactione q Q forv=0, 1 and 2. The numerical values are
$$\begin{gathered} \mu _{\mathfrak{e}1} = 8,152(6) deb \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 1)}}{{\mu _{\mathfrak{e}1} (v = 0)}} = 1,007985 (7) \hfill \\ \frac{{\mu _{\mathfrak{e}1} (v = 2)}}{{\mu _{\mathfrak{e}1} (v = 1)}} = 1,00798 (5) \hfill \\ \mu _J = - 2,89(3)10^{ - 6} \mu _B \hfill \\ \frac{{\mu _J (v = 0)}}{{\mu _J (v = 1)}} = 1,020 (13) \hfill \\ (\sigma _ \bot - \sigma _\parallel )_{Na} = - 51(12) \cdot 10^{ - 5} \hfill \\ (\sigma _ \bot - \sigma _\parallel )_F = - 51(12) \cdot 10^{ - 6} \hfill \\ (\xi _ \bot - \xi _\parallel ) = - 1,59(120)10^{ - 30} erg/Gau\beta ^2 \hfill \\ {}^CNa/^h = 1,7 (2)kHz \hfill \\ {}^CF/^h = 2,2 (2)kHz \hfill \\ {}^dT/^h = 3,7 (2)kHz \hfill \\ {}^dS/^h = 0,2 (2)kHz \hfill \\ eq Q/h = - 8,4393 (19)MHz \hfill \\ \frac{{eq Q(v = 0)}}{{eq Q(v = 1)}} = 1,0134 (2) \hfill \\ \frac{{eq Q(v = 1)}}{{eq Q(v = 2)}} = 1,0135 (2) \hfill \\ \end{gathered} $$  相似文献   

14.
The reversible magnetic torque of untwinned YBa2Cu3O7 single crystals shows the four-fold symmetry in thea-b plane. The irreversible torque indicates evidence for a novel intrinsic pinning along thea andb axes. These facts mean that the free energy of the four-fold symmetry has a minimum when the field is applied along thea orb axis. The results are consistent with those expected from thed x 2?y 2 symmetry and rule out the possibility of thed xy symmetry. The Fermi surface anisotropy is not responsible for the observed anisotropy. This is firstbulk evidence for thek-dependent gap anisotropy on the Fermi surface. The two-fold anisotropy parameter is found as\(\gamma _{ab} = \sqrt {{{m_a } \mathord{\left/ {\vphantom {{m_a } {m_b }}} \right. \kern-\nulldelimiterspace} {m_b }}} = 1.18 \pm 0.14\).  相似文献   

15.
Equilibrium between the ion exchange membrane and solutions of anions at various valences has been the subject of this investigation. Competitive ion exchange reactions were studied on a strong base anion exchange membrane AMX manufactured by Tokuyama, commercialized by Eurodia, involving Cl?, $ {\text NO}_3^{ - } $ and $ {\text SO}_4^{{2 - }} $ ions. Solution concentrations studied were 0.05 and 0.1 M for all the systems reported. Experiments were performed with sodium as the counter ion, and the temperature was kept constant (T?=?298 K). Ionic exchange isotherms for the binary systems— $ {{\text Cl}^{ - }}/{\text NO}_3^{ - } $ , $ {{\text Cl}^{ - }}/{\text SO}_4^{{2 - }} $ , and $ {\text NO}_3^{ - }/{\text SO}_4^{{2 - }} $ —were established. The obtained results show that the sulfate was the most strongly sorbed, and the selectivity order is $ {\text SO}_4^{{2 - }} > {\text NO}_3^{ - } > {{\text Cl}^{ - }} $ at 0.05 M and $ {\text NO}_3^{ - } > {\text SO}_4^{{2 - }} > {{\text Cl}^{ - }} $ at 0.1 M under the experimental conditions. Selectivity coefficients $ K_{{{{{\text Cl} }^{ - }}}}^{{{\text NO}_3^{ - }}} $ , $ K_{{2{{{\text Cl} }^{ - }}}}^{{{\text SO}_4^{{2 - }}}} $ , and $ K_{{2{\text NO}_3^{ - }}}^{{{\text SO}_4^{{2 - }}}} $ for the three binary systems were determined. All the results given by this membrane were compared with those obtained, in the same conditions, with the RPA membrane (produced by RHONE POULENC). Ternary equilibrium data were taken for $ {{\text Cl}^{ - }}/{\text NO}_3^{ - }/{\text SO}_4^{{2 - }} $ . The prediction of the ternary system based only on the binary data was consistent with the experimental data obtained for this system. The good agreement between the experimental and the predicted data showed that the proposed framework can be considered as an effective method to predict many ternary systems from binary systems.  相似文献   

16.
An electric molecular beam resonance spectrometer has been used to measure simultaneously the Zeeman- and Stark-effect splitting of the hyperfine structure of133Cs19F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. Electrically induced (Δ m J =±1)-transitions have been measured in theJ=1 rotational state, υ=0, 1 vibrational state. The obtained quantities are: The electric dipolmomentμ el of the molecule for υ=0, 1; the rotational magnetic dipolmomentμ J for υ=0, 1; the anisotropy of the magnetic shielding (σ -σ‖) by the electrons of both nuclei as well as the anisotropy of the molecular susceptibility (ξ -ξ‖), the spin rotational interaction constantsc Cs andc F, the scalar and the tensor part of the nuclear dipol-dipol interaction, the quadrupol interactioneqQ for υ=0, 1. The numerical values are:
$$\begin{gathered} \mu _{el} \left( {\upsilon = 0} \right) = 73878\left( 3 \right)deb \hfill \\ \mu _{el} \left( {\upsilon = 1} \right) - \mu _{el} \left( {\upsilon = 0} \right) = 0.07229\left( {12} \right)deb \hfill \\ \mu _J /J\left( {\upsilon = 0} \right) = - 34.966\left( {13} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \mu _J /J\left( {\upsilon = 1} \right) = - 34.823\left( {26} \right) \cdot 10^{ - 6} \mu _B \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_{Cs} = - 1.71\left( {21} \right) \cdot 10^{ - 4} \hfill \\ \left( {\sigma _ \bot - \sigma _\parallel } \right)_F = - 5.016\left( {15} \right) \cdot 10^{ - 4} \hfill \\ \left( {\xi _ \bot - \xi _\parallel } \right) = 14.7\left( {60} \right) \cdot 10^{ - 30} erg/Gau\beta ^2 \hfill \\ c_{cs} /h = 0.638\left( {20} \right)kHz \hfill \\ c_F /h = 14.94\left( 6 \right)kHz \hfill \\ d_T /h = 0.94\left( 4 \right)kHz \hfill \\ \left| {d_s /h} \right|< 5kHz \hfill \\ eqQ/h\left( {\upsilon = 0} \right) = 1238.3\left( 6 \right) kHz \hfill \\ eqQ/h\left( {\upsilon = 1} \right) = 1224\left( 5 \right) kHz \hfill \\ \end{gathered} $$  相似文献   

17.
We explicitly derive the proper-time (τ) principal Lyapunov exponent (λp) and coordinate-time (t) principal Lyapunov exponent (λc) for Reissner–Nordstrøm (RN) black hole (BH). We also compute their ratio. For RN space-time, it is shown that the ratio is \(({\lambda _{p}}/{\lambda _{c}})={r_{0}}/{\sqrt {{r_{0}^{2}}-3Mr_{0}+2Q^{2}}}\) for time-like circular geodesics and for Schwarzschild BH, it is \(({\lambda _{p}}/{\lambda _{c}})={\sqrt {r_{0}}}/{\sqrt {r_{0}-3M}}\). We further show that their ratio λp/λc may vary from orbit to orbit. For instance, for Schwarzschild BH at the innermost stable circular orbit (ISCO), the ratio is \(({\lambda _{p}}/{\lambda _{c}})|_{r_{\text {ISCO}}=6M}=\sqrt {2}\) and at marginally bound circular orbit (MBCO) the ratio is calculated to be \(({\lambda _{p}}/{\lambda _{c}})|_{r_{\mathrm {m}\mathrm {b}}=4M}=2\). Similarly, for extremal RN BH, the ratio at ISCO is \(({\lambda _{p}}/{\lambda _{c}})|_{r_{\text {ISCO}}=4M}={2\sqrt {2}}/{\sqrt {3}}\). We also further analyse the geodesic stability via this exponent. By evaluating the Lyapunov exponent, it is shown that in the eikonal limit, the real and imaginary parts of the quasinormal modes of RN BH is given by the frequency and instability time-scale of the unstable null circular geodesics.  相似文献   

18.
The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature (T?>?T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T?<<?n 0 g B E p ?<<?k B T (n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as \( {\tau}_{dd12}^{-1}\propto {e}^{-E/{k}_BT} \) and τ c12?∝?T ?5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T ?3 behavior of the thermal conductivity. In the low-temperature limit, k B T?<<?n 0 g B , E p ?>>?k B T, since the relaxation rate \( {\tau}_{c12}^{-1} \) is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit (k B T?>?n 0 g B ) and low momenta, the relaxation rates \( {\tau}_{c12}^{-1} \) and \( {\tau}_{dd12}^{-1} \) change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.  相似文献   

19.
We report the electrochemical Li reactivity of the cubic NiP3 phase, a candidate for anode applications for Li-ion batteries. NiP3 reacts with nine lithium per formula unit leading to a first cycle reversible capacity of 1,475 mAh/g at an average potential of 0.9 V vs. Li+/Li°. Electrochemical measurements and complementary X-ray diffraction showed that NiP3 presents a conversion process competing with an insertion process. A good cycleability may only be obtained on a limited potential window, excluding the low-potential region. This paper was presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

20.
We derive the evolution law of an initial two-mode squeezed vacuum state \( \text {sech}^{2}\lambda e^{a^{\dag }b^{\dagger }\tanh \lambda }\left \vert 00\right \rangle \left \langle 00\right \vert e^{ab\tanh \lambda }\) (a pure state) passing through an a-mode diffusion channel described by the master equation
$$\frac{d\rho \left( t\right) }{dt}=-\kappa \left[ a^{\dagger}a\rho \left( t\right) -a^{\dagger}\rho \left( t\right) a-a\rho \left( t\right) a^{\dagger}+\rho \left( t\right) aa^{\dagger}\right] , $$
since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from this channel is a two-mode mixed state. Performing partial trace over the b-mode of ρ(t) yields a new chaotic field, \(\rho _{a}\left (t\right ) =\frac {\text {sech}^{2}\lambda }{1+\kappa t \text {sech}^{2}\lambda }:\exp \left [ \frac {- \text {sech}^{2}\lambda }{1+\kappa t\text {sech}^{2}\lambda }a^{\dagger }a \right ] :,\) which exhibits higher temperature and more photon numbers, showing the diffusion effect. Besides, measuring a-mode of ρ(t) to find n photons will result in the collapse of the two-mode system to a new Laguerre polynomial-weighted chaotic state in b-mode, which also exhibits entanglement.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号