首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \((M,g)\) be a two dimensional compact Riemannian manifold of genus \(g(M)>1\). Let \(f\) be a smooth function on \(M\) such that
$$\begin{aligned} f \ge 0, \quad f\not \equiv 0, \quad \min _M f = 0. \end{aligned}$$
Let \(p_1,\ldots ,p_n\) be any set of points at which \(f(p_i)=0\) and \(D^2f(p_i)\) is non-singular. We prove that for all sufficiently small \(\lambda >0\) there exists a family of “bubbling” conformal metrics \(g_\lambda =e^{u_\lambda }g\) such that their Gauss curvature is given by the sign-changing function \(K_{g_\lambda }=-f+\lambda ^2\). Moreover, the family \(u_\lambda \) satisfies
$$\begin{aligned} u_\lambda (p_j) = -4\log \lambda -2\log \left( \frac{1}{\sqrt{2}} \log \frac{1}{\lambda }\right) +O(1) \end{aligned}$$
and
$$\begin{aligned} \lambda ^2e^{u_\lambda }\rightharpoonup 8\pi \sum _{i=1}^{n}\delta _{p_i},\quad \text{ as } \lambda \rightarrow 0, \end{aligned}$$
where \(\delta _{p}\) designates Dirac mass at the point \(p\).
  相似文献   

2.
Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,
$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$
where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:
$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$
where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.
  相似文献   

3.
The dynamics of functions \(f_\lambda (z)= \lambda \frac{\mathrm{e}^{z}}{z+1}\ \text{ for }\ z\in \mathbb {C}, \lambda >0\) is studied showing that there exists \(\lambda ^* > 0\) such that the Julia set of \(f_\lambda \) is disconnected for \(0< \lambda < \lambda ^*\) whereas it is the whole Riemann sphere for \(\lambda > \lambda ^*\). Further, for \(0< \lambda < \lambda ^*\), the Julia set is a disjoint union of two topologically and dynamically distinct completely invariant subsets, one of which is totally disconnected. The union of the escaping set and the backward orbit of \(\infty \) is shown to be disconnected for \(0<\lambda < \lambda ^*\) whereas it is connected for \(\lambda > \lambda ^*\). For complex \(\lambda \), it is proved that either all multiply connected Fatou components ultimately land on an attracting or parabolic domain containing the omitted value of the function or the Julia set is connected. In the latter case, the Fatou set can be empty or consists of Siegel disks. All these possibilities are shown to occur for suitable parameters. Meromorphic functions \(E_n(z) =\mathrm{e}^{z}(1+z+\frac{z^2}{2!}+\cdots +\frac{z^n}{n!})^{-1}\), which we call exponential-like, are studied as a generalization of \(f(z)=\frac{\mathrm{e}^{z}}{z+1}\) which is nothing but \(E_1(z)\). This name is justified by showing that \(E_n\) has an omitted value 0 and there are no other finite singular value. In fact, it is shown that there is only one singularity over 0 as well as over \(\infty \) and both are direct. Non-existence of Herman rings are proved for \(\lambda E_n \).  相似文献   

4.
A generalized strong external difference family (briefly \((v, m; k_1,\dots ,k_m; \lambda _1,\dots ,\lambda _m)\)-GSEDF) was introduced by Paterson and Stinson in 2016. In this paper, we give some nonexistence results for GSEDFs. In particular, we prove that a \((v, 3;k_1,k_2,k_3; \lambda _1,\lambda _2,\lambda _3)\)-GSEDF does not exist when \(k_1+k_2+k_3< v\). We also give a first recursive construction for GSEDFs and prove that if there is a \((v,2;2\lambda ,\frac{v-1}{2};\lambda ,\lambda )\)-GSEDF, then there is a \((vt,2;4\lambda ,\frac{vt-1}{2};2\lambda ,2\lambda )\)-GSEDF with \(v>1\), \(t>1\) and \(v\equiv t\equiv 1\pmod 2\). Then we use it to obtain some new GSEDFs for \(m=2\). In particular, for any prime power q with \(q\equiv 1\pmod 4\), we show that there exists a \((qt, 2;(q-1)2^{n-1},\frac{qt-1}{2};(q-1)2^{n-2},(q-1)2^{n-2})\)-GSEDF, where \(t=p_1p_2\dots p_n\), \(p_i>1\), \(1\le i\le n\), \(p_1, p_2,\dots ,p_n\) are odd integers.  相似文献   

5.
In this paper, we investigate the Hyers–Ulam stability of the differential operators \(T_\lambda \) and D on the weighted Hardy spaces \(H_\beta ^2\) with the reproducing property. We obtain a necessary and sufficient condition in order that D is stable on \(H_\beta ^2\), and construct an example concerning the stability of \(T_\lambda \) on \(H_\beta ^2\). Moreover, we also investigate the Hyers–Ulam stability of the partial differential operators \(D_i\) on the several variables reproducing kernel space \(H_f^2(\mathbb {B}_d)\).  相似文献   

6.
We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi _{D_1} (x)+ \Delta _p u(x) \chi _{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the p-Laplacian (with \(p>2\)) in the rest of the domain, \(D_2 \). We show that this problem exhibits a concave–convex nature for \(1<q<p-1\). In fact, we prove that there exists a positive value \(\lambda ^*\) such that the problem has no positive solution for \(\lambda > \lambda ^*\) and a minimal positive solution for \(0<\lambda < \lambda ^*\). If in addition we assume that p is subcritical, that is, \(p<2N/(N-2)\) then there are at least two positive solutions for almost every \(0<\lambda < \lambda ^*\), the first one (that exists for all \(0<\lambda < \lambda ^*\)) is obtained minimizing a suitable functional and the second one (that is proven to exist for almost every \(0<\lambda < \lambda ^*\)) comes from an appropriate (and delicate) mountain pass argument.  相似文献   

7.
Let k be an integer with \(k\ge 3\) and \(\eta \) be any real number. Suppose that \(\lambda _1, \lambda _2, \lambda _3, \lambda _4, \mu \) are non-zero real numbers, not all of the same sign and \(\lambda _1/\lambda _2\) is irrational. It is proved that the inequality \(|\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+\eta |<(\max \ p_j)^{-\sigma }\) has infinitely many solutions in prime variables \(p_1, p_2, \ldots , p_5\), where \(0<\sigma <\frac{1}{16}\) for \(k=3,\ 0<\sigma <\frac{5}{3k2^k}\) for \(4\le k\le 5\) and \(0<\sigma <\frac{40}{21k2^k}\) for \(k\ge 6\). This gives an improvement of an earlier result.  相似文献   

8.
We consider the partition lattice \(\Pi (\lambda )\) on any set of transfinite cardinality \(\lambda \) and properties of \(\Pi (\lambda )\) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly \(\lambda \); (II) there are maximal chains in \(\Pi (\lambda )\) of cardinality \(> \lambda \); (III) a regular cardinal \(\lambda \) is strongly inaccessible if and only if every maximal chain in \(\Pi (\lambda )\) has size at least \(\lambda \); if \(\lambda \) is a singular cardinal and \(\mu ^{< \kappa } < \lambda \le \mu ^\kappa \) for some cardinals \(\kappa \) and (possibly finite) \(\mu \), then there is a maximal chain of size \(< \lambda \) in \(\Pi (\lambda )\); (IV) every non-trivial maximal antichain in \(\Pi (\lambda )\) has cardinality between \(\lambda \) and \(2^{\lambda }\), and these bounds are realised. Moreover, there are maximal antichains of cardinality \(\max (\lambda , 2^{\kappa })\) for any \(\kappa \le \lambda \); (V) all cardinals of the form \(\lambda ^\kappa \) with \(0 \le \kappa \le \lambda \) occur as the cardinalities of sets of complements to some partition \(\mathcal {P} \in \Pi (\lambda )\), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.  相似文献   

9.
We consider random matrices of the form \(H = W + \lambda V, \lambda \in {\mathbb {R}}^+\), where \(W\) is a real symmetric or complex Hermitian Wigner matrix of size \(N\) and \(V\) is a real bounded diagonal random matrix of size \(N\) with i.i.d. entries that are independent of \(W\). We assume subexponential decay of the distribution of the matrix entries of \(W\) and we choose \(\lambda \sim 1\), so that the eigenvalues of \(W\) and \(\lambda V\) are typically of the same order. Further, we assume that the density of the entries of \(V\) is supported on a single interval and is convex near the edges of its support. In this paper we prove that there is \(\lambda _+\in {\mathbb {R}}^+\) such that the largest eigenvalues of \(H\) are in the limit of large \(N\) determined by the order statistics of \(V\) for \(\lambda >\lambda _+\). In particular, the largest eigenvalue of \(H\) has a Weibull distribution in the limit \(N\rightarrow \infty \) if \(\lambda >\lambda _+\). Moreover, for \(N\) sufficiently large, we show that the eigenvectors associated to the largest eigenvalues are partially localized for \(\lambda >\lambda _+\), while they are completely delocalized for \(\lambda <\lambda _+\). Similar results hold for the lowest eigenvalues.  相似文献   

10.
We develop structural insights into the Littlewood–Richardson graph, whose number of vertices equals the Littlewood–Richardson coefficient \(c_{\lambda ,\mu }^{\nu }\) for given partitions \(\lambda \), \(\mu \), and \(\nu \). This graph was first introduced in Bürgisser and Ikenmeyer (SIAM J Discrete Math 27(4):1639–1681, 2013), where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood–Richardson coefficient: We design an algorithm for the exact computation of \(c_{\lambda ,\mu }^{\nu }\) with running time \(\mathcal {O}\big ((c_{\lambda ,\mu }^{\nu })^2 \cdot {\textsf {poly}}(n)\big )\), where \(\lambda \), \(\mu \), and \(\nu \) are partitions of length at most n. Moreover, we introduce an algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge t\) whose running time is \(\mathcal {O}\big (t^2 \cdot {\textsf {poly}}(n)\big )\). Even the existence of a polynomial-time algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge 2\) is a nontrivial new result on its own. Our insights also lead to the proof of a conjecture by King et al. (Symmetry in physics. American Mathematical Society, Providence, 2004), stating that \(c_{\lambda ,\mu }^{\nu }=2\) implies \(c_{M\lambda ,M\mu }^{M\nu } = M+1\) for all \(M \in \mathbb {N}\). Here, the stretching of partitions is defined componentwise.  相似文献   

11.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

12.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

13.
In this paper we are concerned with the multiplicity of solutions for the following fractional Laplace problem
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}u= \mu |u|^{q-2}u + |u|^{2^*_s-2}u &{}\quad \text{ in } \Omega \\ u=0 &{}\quad \text{ in } {\mathbb {R}}^n{\setminus } \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^n\) is an open bounded set with continuous boundary, \(n>2s\) with \(s\in (0,1),(-\Delta )^{s}\) is the fractional Laplacian operator, \(\mu \) is a positive real parameter, \(q\in [2, 2^*_s)\) and \(2^*_s=2n/(n-2s)\) is the fractional critical Sobolev exponent. Using the Lusternik–Schnirelman theory, we relate the number of nontrivial solutions of the problem under consideration with the topology of \(\Omega \). Precisely, we show that the problem has at least \(cat_{\Omega }(\Omega )\) nontrivial solutions, provided that \(q=2\) and \(n\geqslant 4s\) or \(q\in (2, 2^*_s)\) and \(n>2s(q+2)/q\), extending the validity of well-known results for the classical Laplace equation to the fractional nonlocal setting.
  相似文献   

14.
If a graph submanifold (xf(x)) of a Riemannian warped product space \((M^m\times _{e^{\psi }}N^n,\tilde{g}=g+ e^{2\psi }h)\) is immersed with parallel mean curvature H, then we obtain a Heinz-type estimation of the mean curvature. Namely, on each compact domain D of M, \(m\Vert H\Vert \le \frac{A_{\psi }(\partial D)}{V_{\psi }(D)}\) holds, where \(A_{\psi }(\partial D)\) and \(V_{\psi }(D)\) are the \({\psi }\)-weighted area and volume, respectively. In particular, \(H=0\) if (Mg) has zero-weighted Cheeger constant, a concept recently introduced by Impera et al. (Height estimates for killing graphs. arXiv:1612.01257, 2016). This generalizes the known cases \(n=1\) or \(\psi =0\). We also conclude minimality using a closed calibration, assuming \((M,g_*)\) is complete where \(g_*=g+e^{2\psi }f^*h\), and for some constants \(\alpha \ge \delta \ge 0\), \(C_1>0\) and \(\beta \in [0,1)\), \(\Vert \nabla ^*\psi \Vert ^2_{g_*}\le \delta \), \(\mathrm {Ricci}_{\psi ,g_*}\ge \alpha \), and \({\mathrm{det}}_g(g_*)\le C_1 r^{2\beta }\) holds when \(r\rightarrow +\infty \), where r(x) is the distance function on \((M,g_*)\) from some fixed point. Both results rely on expressing the squared norm of the mean curvature as a weighted divergence of a suitable vector field.  相似文献   

15.
We consider the remaining unsettled cases in the problem of existence of energy minimizing solutions for the Dirichlet value problem \(L_\gamma u-\lambda u=\frac{u^{2^*(s)-1}}{|x|^s}\) on a smooth bounded domain \(\Omega \) in \({\mathbb {R}}^n\) (\(n\ge 3\)) having the singularity 0 in its interior. Here \(\gamma <\frac{(n-2)^2}{4}\), \(0\le s <2\), \(2^*(s):=\frac{2(n-s)}{n-2}\) and \(0\le \lambda <\lambda _1(L_\gamma )\), the latter being the first eigenvalue of the Hardy–Schrödinger operator \(L_\gamma :=-\Delta -\frac{\gamma }{|x|^2}\). There is a threshold \(\lambda ^*(\gamma , \Omega ) \ge 0\) beyond which the minimal energy is achieved, but below which, it is not. It is well known that \(\lambda ^*(\Omega )=0\) in higher dimensions, for example if \(0\le \gamma \le \frac{(n-2)^2}{4}-1\). Our main objective in this paper is to show that this threshold is strictly positive in “lower dimensions” such as when \( \frac{(n-2)^2}{4}-1<\gamma <\frac{(n-2)^2}{4}\), to identify the critical dimensions (i.e., when the situation changes), and to characterize it in terms of \(\Omega \) and \(\gamma \). If either \(s>0\) or if \(\gamma > 0\), i.e., in the truly singular case, we show that in low dimensions, a solution is guaranteed by the positivity of the “Hardy-singular internal mass” of \(\Omega \), a notion that we introduce herein. On the other hand, and just like the case when \(\gamma =s=0\) studied by Brezis and Nirenberg (Commun Pure Appl Math 36:437–477, 1983) and completed by Druet (Ann Inst H Poincaré Anal Non Linéaire 19(2):125–142, 2002), \(n=3\) is the critical dimension, and the classical positive mass theorem is sufficient for the merely singular case, that is when \(s=0\), \(\gamma \le 0\).  相似文献   

16.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

17.
In this paper, we investigate the following critical fractional Schrödinger equation
$$\begin{aligned} (-\Delta )^su+V(x)u=|u|^{2_s^*-2}u+\lambda K(x)f(u), \ x \in \mathbb {R}^N, \end{aligned}$$
where \(\lambda >0\), \(0<s<1\), \((-\Delta )^s\) denotes the fractional Laplacian of order s, \(V, \ K\) are nonnegative continuous functions satisfying some conditions and f is a continuous function, \(N>2s\) and \(2_s^*=\frac{2N}{N-2s}\). We prove that the equation has a positive solution for large \(\lambda \) by the variational method.
  相似文献   

18.
We extend previous work on standard two-parameter Jordan partitions by Barry (Commun Algebra 43:4231–4246, 2015) to three parameters. Let \(J_r\) denote an \(r \times r\) matrix with minimal polynomial \((t-1)^r\) over a field F of characteristic p. For positive integers \(n_1\), \(n_2\), and \(n_3\) satisfying \(n_1 \le n_2 \le n_3\), the Jordan canonical form of the \(n_1 n_2 n_3 \times n_1 n_2 n_3\) matrix \(J_{n_1} \otimes J_{n_2} \otimes J_{n_3}\) has the form \(J_{\lambda _1} \oplus J_{\lambda _2} \oplus \cdots \oplus J_{\lambda _m}\) where \(\lambda _1 \ge \lambda _2 \ge \cdots \ge \lambda _m>0\) and \(\sum _{i=1}^m \lambda _i=n_1 n_2 n_3\). The partition \(\lambda (n_1,n_2,n_3:p)=(\lambda _1, \lambda _2,\ldots , \lambda _m)\) of \(n_1 n_2 n_3\), which depends on \(n_1\), \(n_2\), \(n_3\), and p, will be called a Jordan partition. We will define what we mean by a standard Jordan partition and give necessary and sufficient conditions for its existence.  相似文献   

19.
We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).  相似文献   

20.
We present dimension-free reverse Hölder inequalities for strong \(A^*_p\) weights, \(1\le p < \infty \). We also provide a proof for the full range of local integrability of \(A_1^*\) weights. The common ingredient is a multidimensional version of Riesz’s “rising sun” lemma. Our results are valid for any nonnegative Radon measure with no atoms. For \(p=\infty \), we also provide a reverse Hölder inequality for certain product measures. As a corollary we derive mixed \(A_p^*-A_\infty ^*\) weighted estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号