首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radial basis functions (RBFs) have found important applications in areas such as signal processing, medical imaging, and neural networks since the early 1980s. Several applications require that certain physical properties are satisfied by the interpolant, for example, being divergence-free in case of incompressible data. In this paper we consider a class of customized (e.g., divergence-free) RBFs that are matrix-valued and have compact support; these are matrix-valued analogues of the well-known Wendland functions. We obtain stability estimates for a wide class of interpolants based on matrix-valued RBFs, also taking into account the size of the compact support of the generating RBF. We conclude with an application based on an incompressible Navier–Stokes equation, namely the driven-cavity problem, where we use divergence-free RBFs to solve the underlying partial differential equation numerically. We discuss the impact of the size of the support of the basis function on the stability of the solution. AMS subject classification 65D05  相似文献   

2.
Recently a new class of customized radial basis functions (RBFs) was introduced. We revisit this class of RBFs and derive a density result guaranteeing that any sufficiently smooth divergence-free function can be approximated arbitrarily closely by a linear combination of members of this class. This result has potential applications to numerically solving differential equations, such as fluid flows, whose solution is divergence free. AMS subject classification 41Axx, 41A30, 41A35, 41A60Svenja Lowitzsch: The results are part of the authorss dissertation written at Texas A&M University, College Station, TX 77843, USA.  相似文献   

3.
In this paper, we present a meshfree technique for the numerical solution of the regularized long wave (RLW) equation. This approach is based on a global collocation method using the radial basis functions (RBFs). Different kinds of RBFs are used for this purpose. Accuracy of the new method is tested in terms of L2L2 and LL error norms. In case of non-availability of the exact solution, performance of the new method is compared with existing methods. Stability analysis of the method is established. Propagation of single and double solitary waves, wave undulation, and conservation properties of mass, energy and momentum of the RLW equation are discussed.  相似文献   

4.
In this paper, we investigate the superconvergence property of the numerical solution of a quadratic convex optimal control problem by using rectangular mixed finite element methods. The state and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Some realistic regularity assumptions are presented and applied to error estimation by using an operator interpolation technique. We derive superconvergence properties for the flux functions along the Gauss lines and for the scalar functions at the Gauss points via mixed projections. Moreover, global superconvergence results are obtained by virtue of an interpolation postprocessing technique. Thus, based on these superconvergence estimates, some asymptotic exactness a posteriori error estimators are presented for the mixed finite element methods. Finally, some numerical examples are given to demonstrate the practical side of the theoretical results about superconvergence.

  相似文献   


5.
We consider the construction of potential reduction algorithms using volumetric, and mixed volumetric — logarithmic, barriers. These are true large step methods, where dual updates produce constant-factor reductions in the primal-dual gap. Using a mixed volumetric — logarithmic barrier we obtain an iteration algorithm, improving on the best previously known complexity for a large step method. Our results complement those of Vaidya and Atkinson on small step volumetric, and mixed volumetric — logarithmic, barrier function algorithms. We also obtain simplified proofs of fundamental properties of the volumetric barrier, originally due to Vaidya.Research supported by a Summer Research Grant from the College of Business Administration, University of Iowa.  相似文献   

6.
In this paper, a high-order compact stencil for solving the convection–diffusion equation in two dimensions is proposed. The convection and diffusion terms are both approximated by means of radial basis functions (RBFs) that are constructed over 3×33×3 rectangular stencils. Salient features here are that (i) integration is employed to construct local RBF approximations; and (ii) through the constants of integration, values of the convection–diffusion equation at several selected nodes on the stencil are also enforced. Numerical results indicate that (i) the inclusion of the governing equation into the stencil leads to a significant improvement in accuracy; (ii) when the convection dominates, accurate solutions are obtained at a regime of the RBF width which makes the RBFs peaked; and (iii) high levels of accuracy are achieved using relatively coarse grids.  相似文献   

7.
Error estimates for scattered data interpolation by shifts of a positive definite function for target functions in the associated reproducing kernel Hilbert space (RKHS) have been known for a long time. However, apart from special cases where data is gridded, these interpolation estimates do not apply when the target functions generating the data are outside of the associated RKHS, and in fact until very recently no estimates were known in such situations. In this paper, we review these estimates in cases where the underlying space is Rn and the positive definite functions are radial basis functions (RBFs). AMS subject classification 41A25, 41A05, 41A63, 42B35Research supported by grant DMS-0204449 from the National Science Foundation.  相似文献   

8.
This paper formulates a simple classical radial basis functions (RBFs) collocation (Kansa) method for the numerical solution of the nonlinear dispersive and dissipative KdV–Burgers’ (KdVB) equation. The computed results show implementation of the method to nonlinear partial differential equations. This method has an edge over traditional methods such as finite-difference and finite element methods because it does not require a mesh to discretize the problem domain, and a set of scattered nodes in the domain of influence provided by initial data is required for the realization of the method. Accuracy of the method is assessed in terms of error norms L2,LL2,L, number of nodes in the domain of influence, parameter dependent RBFs and time step length. Numerical experiments demonstrate accuracy and robustness of the method for solving nonlinear dispersive and dissipative problems.  相似文献   

9.
In this work we present a theoretical analysis for a residual-type error estimator for locally conservative mixed methods. This estimator was first introduced by Braess and Verfürth for the Raviart-Thomas mixed finite element method working in mesh-dependent norms. We improve and extend their results to cover any locally conservative mixed method under minimal assumptions, in particular, avoiding the saturation assumption made by Braess and Verfürth. Our analysis also takes into account discontinuous coefficients with possibly large jumps across interelement boundaries. The main results are applied to the nonconforming finite element method and the interior penalty discontinuous Galerkin method as well as the mixed finite element method.

  相似文献   


10.
Branch-and-Cut algorithms for general 0–1 mixed integer programs can be successfully implemented by using Lift-and-Project (L&P) methods to generate cuts. L&P cuts are drawn from a cone of valid inequalities that is unbounded and, thus, needs to be truncated, or normalized. We consider general normalizations defined by arbitrary closed convex sets and derive dual problems for generating L&P cuts. This unified theoretical framework generalizes and covers a wide group of already known normalizations. We also give conditions for proving finite convergence of the cutting plane procedure that results from using such general L&P cuts.  相似文献   

11.
Summary Asymptotic expansions for mixed finite element approximations of the second order elliptic problem are derived and Richardson extrapolation can be applied to increase the accuracy of the approximations. A new procedure, which is called the error corrected method, is presented as a further application of the asymptotic error expansion for the first order BDM approximation of the scalar field. The key point in deriving the asymptotic expansions for the error is an establishment ofL 1-error estimates for mixed finite element approximations for the regularized Green's functions. As another application of theL 1-error estimates for the regularized Green's functions, we shall present maximum norm error estimates for mixed finite element methods for second order elliptic problems.  相似文献   

12.
In usual boundary elements methods, the mixed Dirichlet-Neumann problem in a plane polygonal domain leads to difficulties because of the transition of spaces in which the problem is well posed. We build collocation methods based on a mixed single and double layer potential. This indirect method is constructed in such a way that strong ellipticity is obtained in high order spaces of Sobolev type. The boundary values of this potential define a bijective boundary operator if a modified capacity adapted to the problem is not . This condition is analogous to the one met in the use of the single layer potential, and is not a problem in practical computations. The collocation methods use smoothest splines and known singular functions generated by the corners. If splines of order are used, we get quasi-optimal estimates in -norm. The order of convergence is optimal in the sense that it is fixed by the approximation properties of the first missed singular function.  相似文献   

13.
Summary The stability and convergence of mixed finite element methods are investigated, for an equilibrium problem for thin shallow elastic arches. The problem in its standard form contains two terms, corresponding to the contributions from the shear and axial strains, with a small parameter. Lagrange multipliers are introduced, to formulate the problem in an alternative mixed form. Questions of existence and uniqueness of solutions to the standard and mixed problems are addressed. It is shown that finite element approximations of the mixed problem are stable and convergent. Reduced integration formulations are equivalent to a mixed formulation which in general is distinct from the formulation shown to be stable and convergent, except when the order of polynomial interpolationt of the arch shape satisfies 1tmin (2,r) wherer is the order of polynomial approximation of the unknown variables.  相似文献   

14.
This paper provides a large family of interpolatory stationary subdivision schemes based on radial basis functions (RBFs) which are positive definite or conditionally positive definite. A radial basis function considered in this study has a tension parameter λ>0 such that it provides design flexibility. We prove that for a sufficiently large , the proposed 2L-point (LN) scheme has the same smoothness as the well-known 2L-point Deslauriers-Dubuc scheme, which is based on 2L-1 degree polynomial interpolation. Some numerical examples are presented to illustrate the performance of the new schemes, adapting subdivision rules on bounded intervals in a way of keeping the same smoothness and accuracy of the pre-existing schemes on R. We observe that, with proper tension parameters, the new scheme can alleviate undesirable artifacts near boundaries, which usually appear to interpolatory schemes with irregularly distributed control points.  相似文献   

15.
Summary We set up a framework for analyzing mixed finite element methods for the plate problem using a mesh dependent energy norm which applies both to the Kirchhoff and to the Mindlin-Reissner formulation of the problem. The analysis techniques are applied to some low order finite element schemes where three degrees of freedom are associated to each vertex of a triangulation of the domain. The schemes proceed from the Mindlin-Reissner formulation with modified shear energy.Dedicated to Professor Ivo Babuka on the occasion of his 60th birthday  相似文献   

16.
17.
Stabilized mixed methods for the Stokes problem   总被引:7,自引:0,他引:7  
Summary The solution of the Stokes problem is approximated by three stabilized mixed methods, one due to Hughes, Balestra, and Franca and the other two being variants of this procedure. In each case the bilinear form associated with the saddle-point problem of the standard mixed formulation is modified to become coercive over the finite element space. Error estimates are derived for each procedure.Dedicated to Ivo Babuka on the occasion of his sixtieth birthday  相似文献   

18.
Summary We consider the mixed finite element method for locally refined triangulations. A local projection operator is defined to satisfy the commutation property that is required in the general theory of mixed methods. Our results can be applied to every known space of arbitrary order over rectangles or triangles. Optimal-order error estimates and superconvergence for the flux along the Gauss lines are established.  相似文献   

19.
In this paper, we uncover and study a new superconvergence property of a large class of finite element methods for one-dimensional convection-diffusion problems. This class includes discontinuous Galerkin methods defined in terms of numerical traces, discontinuous Petrov-Galerkin methods and hybridized mixed methods. We prove that the so-called numerical traces of both variables superconverge at all the nodes of the mesh, provided that the traces are conservative, that is, provided they are single-valued. In particular, for a local discontinuous Galerkin method, we show that the superconvergence is order when polynomials of degree at most are used. Extensive numerical results verifying our theoretical results are displayed.

  相似文献   


20.
We consider the mean uniform (mixed) norms for a sequence of Gaussian random functions. For a wide class of Gaussian processes and fields the -asymptotic for mixed norms is found whenever the volume of the index set is of order and tends to infinity, for example, -length time interval for random processes. Some numerical examples demonstrate the rate of convergence for the obtained asymptotic. The developed technique can be applied to analysis of various linear approximation methods. As an application we consider the rate of approximation by trigonometrical polynomials in the mean uniform norm. AMS 2000 Subject Classification Primary—60G70, 60G15; Secondary—60F25  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号