首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of acetamide with platinum(II) diamines [Pt(N,N-DimeEn)Cl2], [Pt(Tm)Cl2], and [Pt(N,N-DimeTm)Cl2] (N,N-DimeEn = (CH3)2N(CH2)2NH2, Tm = NH2(CH2)3NH2, N,N-DimeTm = (CH3)2N(CH2)3NH2) with preliminary precipitation of chlorine ions by silver salts gave binuclear Pt(II) acetamidates [Pt2(CH3)2N(CH2)2NH2)2(μ-NHCOCH3)2](NO3)2 · H2O (I), [Pt2(NH2(CH2)3NH2)2)(μ-NHCOCH3)2](NO3)2 · H2O (II), and [Pt2(CH3)2N(CH2)3NH2)2(μ-NHCOCH3)2](HSO4)2 (III), whose crystal structures were determined. Crystals of I are monoclinic: a = 14.459(2) Å, b = 17.197(3) Å, c = 9.822(2) Å, β = 105.923(10)°, V = 3348.6(8) Å3, space group P2(1)/c, Z = 4, R hkl = 0.0419 for 6663 reflections. Complex I is a binuclear acetamidate with bridging (NHCOCH3)? ligands, one of which is bound to two Pt atoms through the N and O atoms, and the other ligand is bound only through the N atom. The Pt-Pt distance is 2.987(1) Å. Crystals of II are monoclinic: a = 10.213(7) Å, b = 13.373(9) Å, c = 16.533(11) Å, β = 97.971(9)°, V = 2236(3) Å3, space group P2(1)/n, Z = 4, R hkl = 0.557 for 6462 reflections. The Pt-Pt distance is 3.057(1) Å. Crystals of III are monoclinic: a = 10.557(12) Å, b = 18.531(2) Å, c = 14.4744(17) Å, β = 108.705(2)°, V = 2682(5) Å3, space group P2(1)/n, Z = 4, R hkl = 0.569 for 8506 reflections. The Pt-Pt distance is 3.202(1) Å. Complexes II and III are binuclear acetamidates, in which two chelating Pt(Tm) or Pt(N,N-DimeTm) moieties are coordinated through the N and O atoms of (NHCOCH3)? cis-bridges.  相似文献   

2.
Aqueous solutions of (S)-, (R)-, and (SR)-methionines (1–3); carbamide (4); (S)-, (R)-, and (SR)-N-carbamoylmethionines (5–7); glycoluril (8); and glycolurils containing (S)and (R)-methionine moieties (9 and 10) kept under natural and hypoelectromagnetic conditions were studied in comparison by a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry, and dielcometry). The process of selforganization and the properties of dilute solutions (1.0?10–15–10–1 mol L–1) of compounds 110 was shown for the first time to depend substantially on the structure of the solute and configuration of methionine (Met) enantiomers. In the series 13, the greatest ability to self-organization is observed for solutions of (SR)-Met in which supramolecular domains (1.0?10–5–1.0?10–1 mol L–1) and nanoassociates (1.0?10–11–1.0?10–8 mol L–1) are formed. The formation of nanoassociates in a concentration range of 1.0?10–12–1.0?10–6 mol L–1 can be responsible for the appearance of nonmonotonic concentration dependences of the physicochemical properties of solutions of N-carbamoylmethionines 57, whereas the physicochemical properties are more pronounced in solution of (S)-N-carbamoylmethionine 5 than in solutions of 6 and 7. The strongest influence of the configuration of the Met enantiomer on the ability of solution to self-organization was revealed in a series of glycolurils 9, 10: solutions of 9 with the (S)-Met moiety are disperse systems in which nanoassociates are formed in a range of 1.0?10–15–1.0?10–5 mol L–1, whereas in solutions of 10 with the (R)-Met fragment the ability to self-organization in the low-concentration range is absent.  相似文献   

3.
The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.  相似文献   

4.
The structural features of 38 mononuclear d 2-Re(V) octahedral monooxo complexes (I–XXXVIII) with oxygen atoms of bidentate-chelating (O, P) ligands (L n ) are considered. The atoms O(L n ) are mostly in trans positions to O(oxo) ligands. In three compounds of general formula [ReO(Lmono)(L n )2] (XXXVI–XXXVIII), the O atoms of two L n ligands occupy both trans and cis positions to oxo ligands. In one complex, namely, in [ReO(L n )(L tri 11 )], n = 3 (XXXV), the atom O(L3) is in the cis position to the oxo ligand; the trans position to O(oxo) is occupied by the atom O(L tri 11 ).  相似文献   

5.
New palladium(II) complexes, [Pd(HL)Cl] · H2O (I) and {K[Pd(L1)(NO2)] · H2O}2, with S-methylisothiosemicarbazone of salicylaldehyde (H2L) and its derivative (H2L1) were synthesized. X-ray diffraction analysis demonstrated the ambident nature of S-alkylated thiosemicarbazone, which is attached to palladium(II) through O, N, and S donor atoms in I and through O, N, and N atoms in II. This is the first known case of metal coordination of the alkylated sulfur atom of a thiosemicarbazide moiety of the ligand. A mechanism of nitrosation of the terminal amide nitrogen atom of the H2L1 ligand during complexation was proposed.  相似文献   

6.
Cis-Pt(II) complexes, namely [Pt{2-(phenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS Ph ), [Pt{2-(4-tert-butylphenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS Ph( t -But) ) and [Pt{2-(4-fluorophenylthiomethyl)pyridine}(H2O)2](CF3SO3)2 Pt(pyS PhF ), were synthesised and characterised. The pK a1 and pK a2 values of the complexes were determined titrimetrically. Substitution of the aqua ligands from these complexes by thiourea nucleophiles was studied at a pH of 2 and ionic strength of 0.1 M under pseudo-first-order conditions using stopped-flow and UV–visible spectrophotometric techniques. Substitution of the aqua ligands depends on both the nature and concentration of the incoming ligand, with low enthalpy and negative entropy of activation values. Substitution of the first and second aqua ligands occurs sequentially and fits the rate laws: k obs (1/2) = k (1/2) [Nu]. The second-order rate constant, k 1, relates to the substitution trans to sulphur, while k 2 is the second-order rate constant for the subsequent substitution of the aqua ligand trans to pyridine. The rate of substitution of the first aqua ligand decreases in the order: Pt(pyS Ph( t -But) ) > Pt(pyS PhF ) > Pt(pyS Ph ), while that of the second decreases in the order: Pt(pyS Ph( t -But) ) > Pt(pyS Ph ) > Pt(pyS PhF ), reflecting the influence of the substituents on the spectator ligands. 195Pt NMR spectra of aged solutions of complexes with the thiourea nucleophile suggest a subsequent but rapid concentration-independent ring opening of the N,S-bidentate ligand to form a PtS 4 species. The crystal structure of Pt(pyS PhF )Cl 2 was elucidated by X-ray diffraction analysis.  相似文献   

7.
Two ethylenediamine derivatives—N-(2-ammoniumethyl)carbamate HN(COO?)CH2CH2N+H3 (I) and tetraacetylethylenediamine (H3CC(O))2NCH2CH2N(C(O)CH3)2 (II) (synthesized for the first time)—have been synthesized and characterized by X-ray crystallography. Compounds I and II are isolated as minor admixtures upon an attempt to synthesize ethylenediamine complexes of lanthanum and neodymium nitrates, respectively. The crystals of I and II are monoclinic: a = 7.778 Å, b = 8.060 Å, c = 7.568 Å, β = 95.73°, Z = 4, space group P21/c (I); a = 5.946, b = 10.255, c = 9.343 Å, β = 95.72°, Z = 2, space group P21/c (II). The bond lengths and bond angles lie within the corresponding standard values. Compounds I and II have different conformations of the N-C-C-N ethylenediamine moiety: gauche in I and trans in II, and the corresponding torsion angles are equal to 66.6° and 180°, respectively.  相似文献   

8.
Two new oxovanadium(V) complexes, [VOL1(OCH3)(CH3OH)] (I) and [VOL2(OCH3)] (II), where L1 and L2 are the di-anionic form of N'-[1-(5-fluoro-2-hydroxyphenyl)methylidene]nicotinohydrazide and N'-(5-fluoro-2-hydroxybenzylidene)-2-hydroxynaphthylhydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CIF files CCDC nos. 891852 (I), 891853 (II)). The crystal of I is monoclinic: space group P21/c, a = 8.061(1), b = 15.293(2), c = 13.471(2) Å, ß = 92.595(2)°, V = 1658.8(4) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.4454(9), b = 8.0833(9), c = 28.906(2) Å, ß = 92.644(2)°, V = 1737.8(3) Å3, Z = 4. The V atom in I is in an octahedral coordination, and that in II is in a square-pyramidal coordination. The antibacterial activity of the compounds against various bacteria was assayed.  相似文献   

9.
Two new square planar complexes with the formula Co(L)2 · CH3OH (1) and Ni(L)2 · CH3OH (2) (HL = HN{C(Me)=NH}2 = N-acetimidoylacetamidine) have been synthesized by solvothermal reactions in methanol/acetonitrile. N-acetimidoylacetamidine ligand was derived from the self-condensation reaction of acetonitrile, and the reaction was promoted by the cooperation of M(II) (M = Co in 1 and M = Ni in 2) with diphenylcarbazide. 1 and 2 are characterized by single crystal X-ray diffraction, elemental analysis and infrared spectrum. Both complexes crystallize in the monoclinic space group P21/c with a = 9.329(6) Å, b = 11.494(7) Å, c = 13.040(8) Å, β = 92.945(11)°, V = 1396.3(16) Å3 and Z = 4 for 1, and a = 9.323(4)Å, b = 11.512(5) Å, c = 13.020(6)Å, β = 92.819(7)°, V = 1395.7(10)Å3 and Z = 4 for 2.  相似文献   

10.
Diisopropyl N-benzoyl-N-(trimethylsilyl)phosphoramidate reacts with ClCH2SiMe2Cl under mild conditions to form diisopropyl N-benzoyl-N-[(chlorodimethylsilyl)methyl]phosphoramidate (III). Diisopropyl N-methyl-N-(trimethylsilyl)phosphoramidate with ClCH2SiMe2Cl affords an N-transsilylation product which does not rearrange into diisopropyl N-[(chlorodimethylsilyl)methyl]-N-methylphosphoramidate (XV) even under severe conditions (4 h, 130°C). Compound XV was prepared by the reaction of diisopropyl phosphorochloridate with N-[(methoxydimethylsilyl)methyl]-N-methylamine followed by treatment of diisopropyl N-[(methoxydimethylsilyl)methyl]-N-methylphosphoramidate with boron trichloride. Analysis of experimental and calculated 29Si chemical shifts points to a five-coordinate silicon atom in compound III and a fourcoordinate silicon atom in compound XV. According to B3LYP calculations with due regard to solvent effects, compound III is an isomer with a C=O→Si bond. By variation of substituents at silicon, phosphorus, and carbonyl carbon atoms, chelate structures with either C=O→Si or P=O→Si dative bonds can be obtained.  相似文献   

11.
(9E)-Phenanthrene-9,10-dione[(1Z)-3,3-dimethyl-3,4-dihydroisoquinolin-1(2H)-ylidene]hydrazonium bromide (LH)Br (I) was synthesized. The models of protonated forms of the LH+ cation were calculated by quantum-chemical methods, and their relative stability was estimated. The crystal structure of compound I was determined by X-ray diffraction analysis. Compound I is built according to the cation-anion type (the mobile protons are located at the nitrogen atoms). The cation exists in the s-cis,cis-isomeric form stabilized by two cyclic hydrogen bonds. The π-electron density is localized on the multiple bonds N(1)-C(1) (1.292(4) Å) and N(3)-C(12) (1.294(4) Å). the spectroscopic characteristics (IR and electronic absorption spectra) of compound I are obtained.  相似文献   

12.
The rate of substitution of aqua ligands from three mononuclear platinum(II) complexes, namely [Pt{2-(pyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(H 2 Py)]; [Pt{2-(3,5-dimethylpyrazol-1-ylmethyl)pyridine}(H2O)2](ClO4)2, [Pt(dCH 3 Py)] and [Pt{2-[(3,5-bis(trifluoromethyl)pyrazoly-1-ylmethyl]pyridine}(H2O)2](ClO4)2, [Pt(dCF 3 Py)] by thiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea, was studied in aqueous perchloric acid medium of constant ionic strength. The substitution reactions were investigated under pseudo-first-order conditions as a function of nucleophile concentration and temperature using UV/Visible and stopped-flow spectrophotometries. The observed pseudo-first-order rate constants, \( k_{{{\text{obs }}\left( {1/2} \right)}} \), for the stepwise substitution of the first and second aqua ligands obeyed the rate law: \( k_{{{\text{obs}}\left( {1/2} \right)}} = k_{{2 \left( { 1 {\text{st/2nd}}} \right)}} \left[ {\text{Nu}} \right] \). The first substitution reaction takes place trans to the pyrazole ligand, while the second entering nucleophile is stabilised at the reaction site trans to the pyridine ligand. The rate of substitution of the first aqua ligand from the complexes followed the order: Pt(dCF 3 Py) > Pt(H 2 Py) > Pt(dCH 3 Py), while that of the second was Pt(H 2 Py) ≈ Pt(dCF 3 Py) > Pt(dCH 3 Py). Lower pK a values were found for the deprotonation of the aqua ligand cis to the pyrazole ring. Density functional theory calculations were performed to support the interpretation of the experimental results.  相似文献   

13.
Two Ni(II) adamantane complexes, [Ni(bqad)Cl2] (1) and [Ni(bpad)(dmbp)(H2O)](ClO4)2·CH3OH H2O (2) (bqad = N,N′-bis(2-quinolinylmethyl) amantadine, bpad = N,N′-bis(2-pyridylmethyl)amantadine, dmbp = 5,5′-dimethyl-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, infrared spectroscopy and single crystal X-ray diffraction. The nickel centers in complex 1 have a distorted tetragonal pyramidal geometry, while the coordination polyhedron of 2 can be described as a distorted octahedron. The reaction kinetics for reduction of p-nitrophenol to p-aminophenol catalyzed by these complexes has been investigated by UV–visible spectrophotometry. Complex 1 exhibits a higher turnover frequency of 1.4 min?1 for the reduction of p-nitrophenol.  相似文献   

14.
Conformers of the biologically active compounds CH3P(O)(OR)(SCH2CH2NR 2 ), where (I) R = i-C4H9, R′ = C2H5 and (II) R = C2H5, R′ = i-C3H7, are calculated within the AM1 level of theory. The elongated and twisted forms with maximum and minimum distances between a nitrogen atom and those of a phosphorus tetrahedron, respectively, and bearing a syn and anti oriented alkoxy group relative to a phosphoryl oxygen, are studied. It is found that the differences between the energy, electronic, and geometric parameters of these forms are apparent in differences between their properties, e.g., the ability to participate in complexation and protonation, reactions that to some extent simulate the interaction between a substance and a biological object.  相似文献   

15.
Photophysical properties of aqueous solutions of the styryl dye 4-[(E)-2-(3,4-dimethoxyphenyl)-1-ethylpyridinium] perchlorate (1) in the presence of cucurbit[n]urils (CB[n]; n = 5, 6, 8) have been studied by fluorescent spectroscopy methods. The fluorescence intensity of a 10–6 mol L–1 solution of 1 increases by a factor of 12.6 upon the formation of 1 : 1 inclusion complexes with CB[6] or 1.3 in complexes with CB[8]. Upon the formation of inclusion complexes, the average lifetime of the electronically excited state of 1 increases to about 1 ns for both CB[6] and CB[8]. On the basis of fluorescence anisotropy measurements, the rotational relaxation times were estimated to be 408, 314, and 183 ps for the complexes with CB[6], CB[8], and for unbound 1, respectively. Using the fluorescence titration method developed for the case of poorly soluble cavitands, the binding constant of 1 with CB[6] was determined to be 1.1 × 105 L mol–1. The addition of CB[5] does not lead to changes in the photophysical properties of a solution of 1, indicating the absence of complexes between CB[5] and 1. It has been found on the basis of the experimental data that the fluorescence rate constant of 1 decreases about twice in the complex with CB[8], but doubles in the complex with CB[6].  相似文献   

16.
Crystal structures of 4-chloro-N-(4-chlorobenzoyl)-N-(2-pyridyl)benzamide (I) Clpod, 3-chloro-N-(3-chlorobenzoyl)-N-(2-pyridyl)benzamide (II) Clmod and 2-chloro-N-(2-chlorobenzoyl)-N-(2-pyridyl)benzamide (III) Clood together with three methylated analogues, Mpod, Mmod and Mood, are presented herein. The Clxod acyclic imides are produced from reacting the 4-/3-/2-chlorobenzoyl chlorides (Clx) with 2-aminopyridine (o), respectively, together with their benzamide analogues Clxo; the Mxod/Mxo triad are produced similarly and in good yield. The five Clxod, Mpod and Mmod structures adopt the open transoid conformations as expected, but Mood crystallises with cisoid oriented benzoyl groups, and this conformation was unexpected, though not unknown. Halogen bonding contacts and weak hydrogen bonding C-H···N/O/π contacts are noted in the structures lacking strong hydrogen bonding donor atoms/groups but possessing a variety of strong and weaker acceptor atoms/groups. For Clxod, contact studies show that both hydrogen and carbon account for a high percentage of elements (70–75%) on the molecular surface and being the most abundant have C···H forming 26–30% of the contacts. Contact enrichment ratios are an indicator of the likelihood of chemical species to form intermolecular interactions with themselves and other species. The C-H···N and C-H···O are the most enriched (with EHN?>?2.15), indicating that these weak hydrogen bonds are the driving force in the Clxod crystal packing formation. For Mxod, the C···H contact type at 40–52% is the most abundant contact type and C-H···O and C-H···N weak hydrogen bonds dominate with enrichment values in the 1.48–1.78 range. In Mxod, N/O···N/O contacts are effectively absent, except for Mpod (0.2%, N···N contacts) and both H···H and C···C non-polar contacts are moderately impoverished while the C···H interactions are slightly enriched (E?=?1.1–1.21).  相似文献   

17.
From tetrahydrofurane solutions containing Cu(II) or Co(II) and potassium pivalate (KPiv) (molar ratios Cu/K=1/10, Co/K=1/5) one can isolate polynuclear [K3Co2Piv7(THF)3] (1) and [K6Cu2Piv10(HPiv)(THF)(H2O)2]\(\cdot\)2THF (2), respectively. In the solid state the structures of the compounds consist of alternating, oppositely winding helices with a step of 46.085 Å for 1 and 25.260 Å for 2. In 2, the bridging pivalates link the infinite helices into layers. For both compounds, an important peculiarity of the structure is wide separation of transition metal ions (at least 5.327 Å for 1 and 6.791 Å for 2). Due to the presence of excess KPiv in the reaction system, the Cu(II) and Co(II) ions do not “coalesce” into polynuclear complexes typically observed in transition metal pivalates; instead they form unusual polymer systems containing alternating atoms of s and d elements. For transition metal pivalates, this type of structure was found for the first time.  相似文献   

18.
A series of the new tin(IV) complexes based on the 2-hydroxy-4-N-(phenyl)-3,6-di-tert-butyl-p-iminobenzoquinone ligand (LH) containing various hydrocarbon substituents R at the metal atom (R = Me, Et, n Bu, t Bu, and Ph) is synthesized. The structures of the synthesized compounds were determined by elemental analysis, IR spectroscopy, and 1H and 119Sn NMR spectroscopy. The X-ray diffraction analyses are carried out for the LSnPh3 (I) and L2SnEt2 (IV) complexes (CIF files CCDC no. 1557840 (I) and 1557839 (IV)). The main electrochemical characteristics in a solution are obtained for the whole series by cyclic voltammetry.  相似文献   

19.
Heterometallic complex [K3Y(Cat36)3(Dme)4] (I) or binuclear complex [Y2(Cat36)3(Dme)3] · Dme (II · Dme) is synthesized, depending on the reactant ratio, by the reaction of YCl3 with 3,6-bis(tertbutylcatecholate) potassium salt (K2Cat36) in 1,2-dimethoxyethane (Dme). Both complexes are characterized by single-crystal X-ray diffraction analysis (CIF files CCDC nos. 1527929 (I) and 1527930 (II)) and 1H and 13C NMR spectroscopy.  相似文献   

20.
Bis[(2,2-dimethyl-4-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)methyl]dichlorosilane (1) and -germane (2) were synthesized by the reaction of 2,2-dimethyl-3-(trimethylsilyl)-2H-benzo[e][1,3]oxazin-3(4H)-one with bis(chloromethyl)dichlorosilane and -germane, respectively, taken in a ratio of 2 : 1. The structures of these compounds were determined and their stereodynamic behavior in solution was studied by multinuclear (1H, 13C, and 29Si) and twodimensional (1H, 13C COSY, HETCOR) NMR spectroscopy. The 29Si NMR spectroscopic study of a solution of complex 1 provides evidence that the silicon atom in this complex is pentacoordinate. The X-ray diffraction study showed that the germanium atom in complex 2 in the solid state is hexacoordinate. The permutation isomerization in the coordination units of complexes 1 and 2 was found and investigated by dynamic 1H NMR spectroscopy. Different mechanisms of stereodynamic transformations are suggested and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号