首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to analyse the lattice dependence of ferromagnetism in the two-dimensional Hubbard model we investigate the instability of the fully polarised ferromagnetic ground state (Nagaoka state) on the triangular, honeycomb and kagome lattices. We mainly focus on the local instability, applying single spin flip variational wave functions which include majority spin correlation effects. The question of global instability and phase separation is addressed in the framework of Hartree-Fock theory. We find a strong tendency towards Nagaoka ferromagnetism on the non-bipartite lattices (triangular, kagome) for more than half filling. For the triangular lattice we find the Nagaoka state to be unstable above a critical density of n = 1.887 at U = ∞, thereby significantly improving former variational results. For the kagome lattice the region where ferromagnetism prevails in the phase diagram widely exceeds the flat band regime. Our results even allow the stability of the Nagaoka state in a small region below half filling. In the case of the bipartite honeycomb lattice several disconnected regions are left for a possible Nagaoka ground state.  相似文献   

2.
《Physica A》2005,357(1):173-180
We present an exact diagonalization study of the half-filled Hubbard model on bipartite quasi-one-dimensional lattices. In particular, we emphasize the dependence of the ferrimagnetic ground state properties, and its associated magnetic excitations, on the Coulomb repulsion U.  相似文献   

3.
Combining a semiclassical analysis with exact diagonalizations, we show that the ground state of the SU(3) Heisenberg model on the square lattice develops three-sublattice long-range order. This surprising pattern for a bipartite lattice with only nearest-neighbor interactions is shown to be the consequence of a subtle quantum order-by-disorder mechanism. By contrast, thermal fluctuations favor two-sublattice configurations via entropic selection. These results are shown to extend to the cubic lattice, and experimental implications for the Mott-insulating states of three-flavor fermionic atoms in optical lattices are discussed.  相似文献   

4.
We introduce an exactly solvable model to study the competition between the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) and breached-pair superfluid in strongly interacting ultracold asymmetric Fermi gases. One can thus investigate homogeneous and inhomogeneous states on equal footing and establish the quantum phase diagram. For certain values of the filling and the interaction strength, the model exhibits a new stable exotic pairing phase which combines an inhomogeneous state with an interior gap to pair excitations. It is proven that this phase is the exact ground state in the strong-coupling limit, while numerical examples in finite lattices show that also at finite interaction strength it can have lower energy than the breached-pair or LOFF states.  相似文献   

5.
We study the nature of the ground state of the two-dimensional extended boson Hubbard model on a square lattice by quantum Monte Carlo methods. We demonstrate that strong but finite on-site interaction U along with a comparable nearest-neighbor repulsion V result in a thermodynamically stable supersolid ground state for densities larger than 1/2, in contrast to fillings less than 1/2 or for very large U, where the checkerboard supersolid is unstable towards phase separation. We discuss the relevance of our results to realizations of supersolids using cold bosonic atoms in optical lattices.  相似文献   

6.
We show that dipolar interactions have dramatic effects on the ground states of rotating atomic Bose gases in the weak-interaction limit. With increasing dipolar interaction (relative to the net contact interaction), the mean field, or high filling factor, ground state undergoes a series of transitions between vortex lattices of different symmetries: triangular, square, "stripe," and "bubble" phases. We also study the effects of dipolar interactions on the quantum fluids at low filling factors. We show that the incompressible Laughlin state at filling factor nu = 1/2 is replaced by compressible stripe and bubble phases.  相似文献   

7.
Wu C 《Physical review letters》2008,100(20):200406
We investigate the general structure of orbital exchange physics in Mott-insulating states of p-orbital systems in optical lattices. Orbital orders occur in both the triangular and kagome lattices. In contrast, orbital exchange in the honeycomb lattice is frustrated as described by a novel quantum 120 degrees model. Its classical ground states are mapped into configurations of the fully packed loop model with an extra U(1) rotation degree of freedom. Quantum orbital fluctuations select a six-site plaquette ground state ordering pattern in the semiclassical limit from the "order from disorder" mechanism. This effect arises from the appearance of a zero energy flat band of orbital excitations.  相似文献   

8.
The spin model of “ferrimagnetic” nanotube is proposed and some theoretical predictions concerning the ground state and low energy excitations of the model are given. In particular, the spin-wave structure of the exact ground state of bipartite magnets is proven. For tubes formed by weakly interacted cyclic fragments we show: first, the existence of gapless excitations with decreasing total spin; and second, gapped excitations. This leads to an intermediate plateau in field dependence of tube magnetization. Numerical calculations show the strong effect of frustrations on the magnetization of anisotropic spin tubes at low temperatures which may lead to the creation of an additional fractional magnetization plateau.  相似文献   

9.
We present a series of rigorous examples of the Kondo lattice model that exhibit full ferromagnetism in the ground state. The models are defined in one-, two- and three-dimensional lattices, and are characterized by a range of hopping terms, specific electron filling, and large ferromagnetic coupling. Our examples show that a sufficient strong but finite exchange coupling between conduction electrons and localized spins could overcome the competition from mobility of a finite density of electrons and drive the system from a paramagnetic phase to a ferromagnetic phase. We also establish a relation of ferromagnetism between the Hubbard model and Kondo lattice model. Meanwhile some rigorous results on ferromagnetism in the corresponding Hubbard model are presented. Received: 10 September 1997 / Revised: 15 October 1997 / Accepted: 17 October 1997  相似文献   

10.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

11.
张龙  翁征宇 《物理学报》2015,64(21):217101-217101
费米子符号在费米液体理论中至关重要. 然而, 在Mott绝缘体中, 很强的电子Coulomb相互作用抑制了体系的电荷涨落并消除了电子交换带来的费米子符号问题. 本文首先回顾二分晶格上Hubbard模型的相位弦理论, 从弱关联的费米液体到强关联的反铁磁Mott绝缘体的转变可以由此得到统一理解. 在任意Coulomb作用强度U下, 我们首先导出Hubbard模型的严格的符号结构. 在小U极限下, 它回到通常的费米子符号; 在大U极限下, 它给出了t-J模型的相位弦符号. 在半满情形下, 我们构造了一种电子分数化的表象, 其中, 电荷子与自旋子通过演生的交互Chern-Simons规范场相互耦合. 由此导出的基态波函数拟设与低能有效理论可以定性刻画Hubbard模型的基态相图. 在弱关联区域, 费米液体的准粒子由电荷子与自旋子的束缚态构成, 其长程相位相干性取决于背景自旋的关联性质. 体系的Mott转变可以通过电荷子打开能隙或是通过自旋子玻色凝聚来实现.  相似文献   

12.
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. Here we apply the density matrix renormalization group to accurately determine the phase diagram for spin-1 bosons loaded on a one-dimensional lattice. The Mott lobes present an even or odd asymmetry associated to the boson filling. We show that for odd fillings the insulating phase is always in a dimerized state. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S = 1 Heisenberg model with biquadratic interaction.  相似文献   

13.
We consider the standard Hubbard model in the U= limit. We show that, for any finite lattice with all positive hopping matrix elements, t i,j >0, the ground state energy of the system containing two particles in excess of half filling plus the energy of the system at half filling is never lower than twice the energy of the system with a single extra particle. Similar results are obtained for holes when the lattice is bipartite. As a byproduct, we obtain a simple alternative proof of Tasaki's generalization of the Nagaoka theorem for non-bipartite lattices (but without the uniqueness clause).  相似文献   

14.
We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity(orbital) pairing instability while the singlet(orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid(mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.  相似文献   

15.
16.
We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states.  相似文献   

17.
《Physics letters. A》1987,120(8):430-432
The Onyszkiewicz model for temperature-induced metamagnets (OTIM model) is redefined on a bipartite lattice of Ising spins. The ground-state diagrams for the square and simple-cubic lattices are presented. The OTIM model is proved to exhibit temperare-induced transitions between ordered phases in some (relatively narrow) range of model parameters.  相似文献   

18.
We study the delocalization effect of a short-range repulsive interaction on the ground state of a finite density of spinless fermions in strongly disordered one dimensional lattices. The density matrix renormalization group method is used to explore the charge density and the sensitivity of the ground state energy with respect to the boundary condition (the persistent current) for a wide range of parameters (carrier density, interaction and disorder). Analytical approaches are developed and allow to understand some mechanisms and limiting conditions. For weak interaction strength, one has a Fermi glass of Anderson localized states, while in the opposite limit of strong interaction, one has a correlated array of charges (Mott insulator). In the two cases, the system is strongly insulating and the ground state energy is essentially invariant under a twist of the boundary conditions. Reducing the interaction strength from large to intermediate values, the quantum melting of the solid array gives rise to a more homogeneous distribution of charges, and the ground state energy changes when the boundary conditions are twisted. In individual chains, this melting occurs by abrupt steps located at sample-dependent values of the interaction where an (avoided) level crossing between the ground state and the first excitation can be observed. Important charge reorganizations take place at the avoided crossings and the persistent currents are strongly enhanced around the corresponding interaction value. These large delocalization effects become smeared and reduced after ensemble averaging. They mainly characterize half filling and strong disorder, but they persist away of this optimal condition. Received 5 July 2000 and Received in final form 8 November 2000  相似文献   

19.
《Physics letters. A》1988,129(2):83-87
We have calculated the probability distribution for the staggered magnetization at T=0 for the 2D antiferromagnetic quantum XY model on finite lattices. For the ground state, the distribution shows evidence of isotropic magnetization ordering on the xy-plane. Based on data on seven lattices up to 26 sites, the extrapolated value of the staggered magnetization is 0.448±0.003 in the thermodynamic limit.  相似文献   

20.
We study the superfluid to Mott‐insulator transition of bosons in an optical anisotropic lattice by employing the Bose‐Hubbard model living on a two‐dimensional lattice with anisotropy parameter κ. The compressible superfluid state and incompressible Mott‐insulator (MI) lobes are efficiently described analytically, using the quantum U(1) rotor approach. The ground state phase diagram showing the evolution of the MI lobes is quantified for arbitrary values of κ, corresponding to various kind of lattices: from square, through rectangular to almost one‐dimensional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号