首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a strategy to design a functional for inverse problems of hyperbolic equations is proposed. For an inverse source problem, it is shown that the designed functional is globally strictly convex. For an inverse coefficient problem, we can only prove that it is strictly convex near true solution. This strategy can be generalized to other inverse problems, as long as Lipschitz stability is given.  相似文献   

2.
This article is concerned with two global optimization problems (P1) and (P2). Each of these problems is a fractional programming problem involving the maximization of a ratio of a convex function to a convex function, where at least one of the convex functions is a quadratic form. First, the article presents and validates a number of theoretical properties of these problems. Included among these properties is the result that, under a mild assumption, any globally optimal solution for problem (P1) must belong to the boundary of its feasible region. Also among these properties is a result that shows that problem (P2) can be reformulated as a convex maximization problem. Second, the article presents for the first time an algorithm for globally solving problem (P2). The algorithm is a branch and bound algorithm in which the main computational effort involves solving a sequence of convex programming problems. Convergence properties of the algorithm are presented, and computational issues that arise in implementing the algorithm are discussed. Preliminary indications are that the algorithm can be expected to provide a practical approach for solving problem (P2), provided that the number of variables is not too large.  相似文献   

3.
The problem of minimizing a convex function over the difference of two convex sets is called ‘reverse convex program’. This is a typical problem in global optimization, in which local optima are in general different from global optima. Another typical example in global optimization is the optimization problem over the efficient set of a multiple criteria programming problem. In this article, we investigate some special cases of optimization problems over the efficient set, which can be transformed equivalently into reverse convex programs in the space of so-called extreme criteria of multiple criteria programming problems under consideration. A suitable algorithm of branch and bound type is then established for globally solving resulting problems. Preliminary computational results with the proposed algorithm are reported.  相似文献   

4.
We address a class of particularly hard-to-solve combinatorial optimization problems, namely that of multicommodity network optimization when the link cost functions are discontinuous step increasing. Unlike usual approaches consisting in the development of relaxations for such problems (in an equivalent form of a large scale mixed integer linear programming problem) in order to derive lower bounds, our d.c.(difference of convex functions) approach deals with the original continuous version and provides upper bounds. More precisely we approximate step increasing functions as closely as desired by differences of polyhedral convex functions and then apply DCA (difference of convex function algorithm) to the resulting approximate polyhedral d.c. programs. Preliminary computational experiments are presented on a series of test problems with structures similar to those encountered in telecommunication networks. They show that the d.c. approach and DCA provide feasible multicommodity flows x * such that the relative differences between upper bounds (computed by DCA) and simple lower bounds r:=(f(x*)-LB)/{f(x*)} lies in the range [4.2 %, 16.5 %] with an average of 11.5 %, where f is the cost function of the problem and LB is a lower bound obtained by solving the linearized program (that is built from the original problem by replacing step increasing cost functions with simple affine minorizations). It seems that for the first time so good upper bounds have been obtained.  相似文献   

5.
We analyze the behavior of a parallel proximal point method for solving convex optimization problems in reflexive Banach spaces. Similar algorithms were known to converge under the implicit assumption that the norm of the space is Hilbertian. We extend the area of applicability of the proximal point method to solving convex optimization problems in Banach spaces on which totally convex functions can be found. This includes the class of all smooth uniformly convex Banach spaces. Also, our convergence results leave more flexibility for the choice of the penalty function involved in the algorithm and, in this way, allow simplification of the computational procedure.  相似文献   

6.
Portfolio optimization with linear and fixed transaction costs   总被引:1,自引:0,他引:1  
We consider the problem of portfolio selection, with transaction costs and constraints on exposure to risk. Linear transaction costs, bounds on the variance of the return, and bounds on different shortfall probabilities are efficiently handled by convex optimization methods. For such problems, the globally optimal portfolio can be computed very rapidly. Portfolio optimization problems with transaction costs that include a fixed fee, or discount breakpoints, cannot be directly solved by convex optimization. We describe a relaxation method which yields an easily computable upper bound via convex optimization. We also describe a heuristic method for finding a suboptimal portfolio, which is based on solving a small number of convex optimization problems (and hence can be done efficiently). Thus, we produce a suboptimal solution, and also an upper bound on the optimal solution. Numerical experiments suggest that for practical problems the gap between the two is small, even for large problems involving hundreds of assets. The same approach can be used for related problems, such as that of tracking an index with a portfolio consisting of a small number of assets.  相似文献   

7.
《Optimization》2012,61(2):265-288
In this article, we investigate the possibilities of accelerating the double smoothing (DS) technique when solving unconstrained nondifferentiable convex optimization problems. This approach relies on the regularization in two steps of the Fenchel dual problem associated with the problem to be solved into an optimization problem having a differentiable strongly convex objective function with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method. The aim of this article is to show how the properties of the functions in the objective of the primal problem influence the implementation of the DS approach and its rate of convergence. The theoretical results are applied to linear inverse problems by making use of different regularization functionals.  相似文献   

8.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

9.
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.  相似文献   

10.
In this paper, a neural network model is constructed on the basis of the duality theory, optimization theory, convex analysis theory, Lyapunov stability theory and LaSalle invariance principle to solve geometric programming (GP) problems. The main idea is to convert the GP problem into an equivalent convex optimization problem. A neural network model is then constructed for solving the obtained convex programming problem. By employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact optimal solution of the original problem. The simulation results also show that the proposed neural network is feasible and efficient.  相似文献   

11.
In this paper we present a method for solving a special three-dimensional design centering problem arising in diamond manufacturing: Find inside a given (not necessarily convex) polyhedral rough stone the largest diamond of prescribed shape and orientation. This problem can be formulated as the one of finding a global maximum of a difference of two convex functions over 3 and can be solved efficiently by using a global optimization algorithm provided that the objective function of the maximization problem can be easily evaluated. Here we prove that with the information available on the rough stone and on the reference diamond, evaluating the objective function at a pointx amounts to computing the distance, with respect to a Minkowski gauge, fromx to a finite number of planes. We propose a method for finding these planes and we report some numerical results.  相似文献   

12.
Optimization problems that involve products of convex functions in the objective function or in the constraints arise in a variety of applications. These problems are difficult global optimization problems. During the past 15 years, however, a number of practical algorithms have been proposed for globally solving these types of problems. In this article, we present and validate a branch-and-reduce algorithm for finding a global optimal solution to a convex program that contains an additional constraint on the product of several convex functions. To globally solve this problem, the algorithm instead globally solves an equivalent master problem. At any stage of the algorithm, a disconnected set consisting of a union of simplices is constructed. This set is guaranteed to contain a portion of the boundary of the feasible region of the master problem where a global optimal solution lies. The algorithm uses a new branch-and-reduce scheme to iteratively reduce the sizes of these sets until a global optimal solution is found. Several potential computational advantages of the algorithm are explained, and a numerical example is solved.  相似文献   

13.
An algorithm for solving a linear multiplicative programming problem (referred to as LMP) is proposed. LMP minimizes the product of two linear functions subject to general linear constraints. The product of two linear functions is a typical non-convex function, so that it can have multiple local minima. It is shown, however, that LMP can be solved efficiently by the combination of the parametric simplex method and any standard convex minimization procedure. The computational results indicate that the amount of computation is not much different from that of solving linear programs of the same size. In addition, the method proposed for LMP can be extended to a convex multiplicative programming problem (CMP), which minimizes the product of two convex functions under convex constraints.  相似文献   

14.
Well known extensions of the classical transportation problem are obtained by including fixed costs for the production of goods at the supply points (facility location) and/or by introducing stochastic demand, modeled by convex nonlinear costs, at the demand points (the stochastic transportation problem, [STP]). However, the simultaneous use of concave and convex costs is not very well treated in the literature. Economies of scale often yield concave cost functions other than fixed charges, so in this paper we consider a problem with general concave costs at the supply points, as well as convex costs at the demand points. The objective function can then be represented as the difference of two convex functions, and is therefore called a d.c. function. We propose a solution method which reduces the problem to a d.c. optimization problem in a much smaller space, then solves the latter by a branch and bound procedure in which bounding is based on solving subproblems of the form of [STP]. We prove convergence of the method and report computational tests that indicate that quite large problems can be solved efficiently. Problems up to the size of 100 supply points and 500 demand points are solved. Received October 11, 1993 / Revised version received July 31, 1995 Published online November 24, 1998  相似文献   

15.
This paper concerns the memoryless quasi-Newton method, that is precisely the quasi-Newton method for which the approximation to the inverse of Hessian, at each step, is updated from the identity matrix. Hence its search direction can be computed without the storage of matrices. In this paper, a scaled memoryless symmetric rank one (SR1) method for solving large-scale unconstrained optimization problems is developed. The basic idea is to incorporate the SR1 update within the framework of the memoryless quasi-Newton method. However, it is well-known that the SR1 update may not preserve positive definiteness even when updated from a positive definite matrix. Therefore we propose the memoryless SR1 method, which is updated from a positive scaled of the identity, where the scaling factor is derived in such a way that positive definiteness of the updating matrices are preserved and at the same time improves the condition of the scaled memoryless SR1 update. Under very mild conditions it is shown that, for strictly convex objective functions, the method is globally convergent with a linear rate of convergence. Numerical results show that the optimally scaled memoryless SR1 method is very encouraging.  相似文献   

16.
This article presents an algorithm for globally solving a sum of ratios fractional programming problem. To solve this problem, the algorithm globally solves an equivalent concave minimization problem via a branch-and-bound search. The main work of the algorithm involves solving a sequence of convex programming problems that differ only in their objective function coefficients. Therefore, to solve efficiently these convex programming problems, an optimal solution to one problem can potentially be used to good advantage as a starting solution to the next problem.  相似文献   

17.
Many constrained sets in problems such as signal processing and optimal control can be represented as a fixed point set of a certain nonexpansive mapping, and a number of iterative algorithms have been presented for solving a convex optimization problem over a fixed point set. This paper presents a novel gradient method with a three-term conjugate gradient direction that is used to accelerate conjugate gradient methods for solving unconstrained optimization problems. It is guaranteed that the algorithm strongly converges to the solution to the problem under the standard assumptions. Numerical comparisons with the existing gradient methods demonstrate the effectiveness and fast convergence of this algorithm.  相似文献   

18.
In this paper a successive optimization method for solving inequality constrained optimization problems is introduced via a parametric monotone composition reformulation. The global optimal value of the original constrained optimization problem is shown to be the least root of the optimal value function of an auxiliary parametric optimization problem, thus can be found via a bisection method. The parametric optimization subproblem is formulated in such a way that it is a one-parameter problem and its value function is a monotone composition function with respect to the original objective function and the constraints. Various forms can be taken in the parametric optimization problem in accordance with a special structure of the original optimization problem, and in some cases, the parametric optimization problems are convex composite ones. Finally, the parametric monotone composite reformulation is applied to study local optimality.  相似文献   

19.
§ 1 IntroductionIn this paper we consider the following unconstrained optimization problem:minx∈ Rnf( x) , ( 1 )where f:Rn→R is a convex LC1 function,i.e.,a continuously differentiable convex func-tion whose gradient is Lipschitz continuous.We call the problem( 1 ) a convex LC1 opti-mization problem.This problem is an importantsubjectin nonlinear optimization.Applica-tions of such a minimization problem include stochastic quadratic programs[1 ,2 ] and the ex-tended linear-quadratic pro…  相似文献   

20.
Recently the authors have proposed a homogeneous and self-dual algorithm for solving the monotone complementarity problem (MCP) [5]. The algorithm is a single phase interior-point type method; nevertheless, it yields either an approximate optimal solution or detects a possible infeasibility of the problem. In this paper we specialize the algorithm to the solution of general smooth convex optimization problems, which also possess nonlinear inequality constraints and free variables. We discuss an implementation of the algorithm for large-scale sparse convex optimization. Moreover, we present computational results for solving quadratically constrained quadratic programming and geometric programming problems, where some of the problems contain more than 100,000 constraints and variables. The results indicate that the proposed algorithm is also practically efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号