首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Gripenberg 《Tetrahedron》1960,10(3-4):135-143
Degradative and spectroscopical evidence, as well as biogenetic considerations led to the conclusion that thelephoric acid is 2,3,8,9-tetrahydroxybenzobis[1,2-b,4,5-b′]benzofuran-6,12-quinone(VI). This view was confirmed by synthesis, involving condensation of chloranil with two molecules of 3,4-dimethoxyphenol and subsequent demethylation.  相似文献   

2.
A low band-gap conjugated polymer, PBDTDPP, composed of unsubstituted benzo[1,2-b:4,5-b']dithiophene and diketopyrrolo[3,4-c]pyrrole was synthesized. The deep HOMO level of PBDTDPP enhances the V(OC) of a PSC up to 0.82 V and exhibits a PCE of 5.16%, while alkoxy substituted PBDTDPP-OR yields a PCE of 2.24% with a V(OC) of 0.61 V.  相似文献   

3.
This review describes the synthesis and photovoltaic performance of donor–acceptor (D–A) semiconducting polymers that have been reported during the last decade. 9,9‐Dialkyl‐2,7‐ fluorene, 2,7‐carbazole, cyclopenta[2,1‐b:3,4‐b′]dithiophene, dithieno[3,2‐b:2′,3′‐d]silole, dithieno[3,2‐b:2′,3′‐d]pyrrole, benzo[1,2‐b:4,5‐b′]dithiophene, benzo[1,2 b:4,5 b′]difuran building blocks, and their D–A copolymers are described in this review. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
采用密度泛函理论(DFT)的B3LYP/6-31G(d)方法对以低聚噻吩为端基、 苯并二噻吩(TPT)和并三噻吩(TTT)为共轭桥、 炔键为连接臂的20个模型化合物进行了计算研究. 在优化中性与离子态几何构型基础上, 获得了前线轨道能级、 电离能(IPs)、 电子亲和势(EAs)、 空穴/电子重组能(λhe)、 载流子迁移率(μhe)及吸收光谱等信息. 结果表明, 炔键的引入及端基低聚噻吩的增加对LUMO能级的调控作用较为显著, 而共轭桥的类型对HOMO能级影响较大; 合理选择端基、 共轭桥和连接臂等结构单元可对该类材料吸光波段及强度进行有效调节. 一维电荷传输模型结果表明, 所设计的化合物均是潜在的双极性有机半导体材料, 其中2,7-二([2,2':5',2'-三噻吩]-5-基)苯并[1,2-b:6,5-b']二噻吩(A3)和2,7-二(二噻吩并噻吩-2-基乙炔基)苯并[1,2-b:6,5-b']二噻吩(a-3)具有较高的电子迁移率, 值得进一步的实验探索研究.  相似文献   

5.
Sun  Rui  Wu  Yao  Guo  Jing  Luo  Zhenghui  Yang  Chuluo  Min  Jie 《中国科学:化学(英文版)》2020,63(9):1246-1255
Two p-type small molecules BDTT-TR and TBFT-TR with benzo[1,2-b′:4,5-b′]dithiophene(BDT) and thieno[2,3-f]benzofuran(TBF) as central core units are synthesized and used as donors in all-small-molecule organic solar cells(all-SMOSCs) with a narrow-bandgap small molecule Y6(2,2′-((2 Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'′:4',5′]thieno[2′,3′: 4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile) as the acceptor. In comparison to BDTT-TR with centrosymmetric BDT as the central unit, TBFT-TR with asymmetric TBF as the central unit shows red-shifted absorption, higher charge-carrier mobility and better charge pathway in blend films. The power conversion efficiency(PCE) of the all-SMOSCs based on TBFT-TR:Y6 reaches 14.03% with a higher short-circuit current density of 24.59 m A cm-2 and a higher fill factor of72.78% compared to the BDTT-TR:Y6 system. The PCE of 14.03% is among the top efficiencies of all-SMOSCs reported in the literature to date.  相似文献   

6.
Syntheses of benzo[3,4]phenanthro[1,2-b]thiophene, benzo[3,4]phenanthro[2,1-b]thiophene and their 1-methyl analogs are reported as potential constituents of solvent refined coal liquids and for mutagenicity testing. The attempted synthesis of the 13-methyl analogs which gave the 11-methyl isomers is also described. Total assignments of the 1H- and 13C-nmr spectra based on long range optimized heteronuclear protoncarbon two-dimensional chemical shift correlation are reported. Carbon assignments obtained for benzo[3,4]-phenanthro[1,2-b]thiophene using this approach were confirmed with a 125 MHz 13C–13C INADEQUATE spectrum. X-Ray crystal structures were determined for benzo[3,4]phenanthro[1,2-b]thiophene and 1-methyl-benzo[3,4]phenanthro[2,1-b]thiophene. Both molecules were helically distorted from planarity. Close intramolecular contacts between the bay region H1–H13 and ClMe-H13 of 2.03 and 2.28 Å, respectively, were responsible for the distortions. There were no close intermolecular contacts of <3.5Å. both molecules refined to an R value of <0.05.  相似文献   

7.
Two novel donor–acceptor (D–A) copolymers P1 and P2 with the thiazoloquinoxaline repeating acceptor moiety and different donor moieties of benzo[1,2-b:4,5-b']dithiophene and isomeric benzo[2,1-b:3,4-b']dithiophene have been prepared. The polymers show light absorption at 300–1200 nm and a band gap width of 0.98 and 1.14 eV, respectively. The energies of the HOMO (–5.42 and–5.29 eV) and LUMO (–3.90 and–3.83 eV) levels of polymers P1 and P2 have been determined. The absorption maximum for polymer P1 in the long-wavelength region is red-shifted by 161 nm, which is caused by stronger charge transfer in P1 as compared with P2. This fact indicates that the benzo[1,2-b:4,5-b']dithiophene structural moiety has a higher electron-donating ability than the benzo[2,1-b:3,4-b']dithiophene moiety. The red shift of the absorption spectrum of polymer P1 in comparison with that of P2 indicates that interchain π–π stacking interactions are more efficient in P1 than in P2.  相似文献   

8.
Magnetic circular dichroism spectra of s-triazolo[ 1,5-b]isoquinolin-5(H)ones, 1,2-dihydro-6H-s-tetrazino[2,3-b] isoquinolin-6-ones and realted compounds were measured. The molecular symmetry of these compounds is so low that the MCD spectra contain only the Faraday parameter B. It appears that the magnitude and sign of the B term depends on the nature of the subslituents and of electron migration from endo- or exo-nitrogen to oxygen, respectively.  相似文献   

9.
We describe the efficient synthesis of substituted benzo[3,4]cyclobuta[1,2‐b]phenazine, benzo[3,4]cyclobuta[1,2]benzo[1,2‐i]phenazine, and benzo[3,4]cyclobuta[1,2‐b]naphtho[2,3‐i]phenazine by a condensation reaction of aromatic diamines with the stable biphenylene‐2,3‐dione.  相似文献   

10.
Both 6,12-diphenylazuleno[1,2-b] azulene and 6,12-di-p-bromophenylazuleno [1,2-b] azulene exhibit similar absorption and MCD spectra. PPP calculations reproduce the observed absorption and MCD spectra. The phenyl and p-bromophenyl groups are considered to present no obstacle in investigating the spectroscopic behavior of azuleno[1,2-b] azulene.  相似文献   

11.
We describe the synthesis of thieno[2,3-c]dibenzothiophene ( 6 ), thieno[3,2-c]dibenzothiophene ( 10 ), thieno-[3,2-a]dibenzothiophene ( 14 ), thieno[2,3-a]dibenzothiophene ( 16 ), benzo[1,2-b:4,3-b]bisbenzo[b]thiophene ( 18 ), benzo[1,2--6:3,4-b]bisbenzo[b]thiophene ( 20 ), benzo[2,1--6:3,4-b]bisbenzo[b]thiophene ( 22 ), benzo[1,2-b:3,4-g]bisbenzo[b]thiophene ( 27 ), benzo[1,2-b:4,3-e]bisbenzo[b]thiophene ( 29 ), benzo[2,1--6:3,4-g]bisbenzo[b]thiophene ( 36 ), benzo[2,1--6:4,3-e]bisbenzo[b]thiophene ( 38 ), benzo[1,2--6:4,3-g]bisbenzo[b]thiophene ( 41 ), benzo[1,2-b:4,5-g]bisbenzo[b]thiophene ( 42 ), benzo[1,2-b:3,4-e]bisbenzo[b]thiophene ( 44 ) and benzo-[1,2-b:5,4-e]bisbenzo[b]thiophene ( 45 ).  相似文献   

12.
Conclusions The reaction of p-diethylbenzene and H2S on a chromium-containing oxide catalyst gives a thiophene analog of phenanthrene, namely, benzo[2,1-b3,4-b]dithiophene, and a thiophene analog of anthracene, namely, benzo[1,2-b4,5-b]dithiophene.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2857–2859, December, 1988.  相似文献   

13.
A dichlorobenzene‐functionalized hole‐transporting material (HTM) is developed for a CH3NH3PbI3‐based perovskite solar cell. Notwithstanding the similarity of the frontier molecular orbital energy levels, optical properties, and hole mobility between the functionalized HTM [a polymer composed of 2′‐butyloctyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐BO), 3′,4′‐dichlorobenzyl‐4,6‐dibromo‐3‐fluorothieno[3,4‐b]thiophene‐2‐carboxylate (TT‐DCB), and 2,6‐bis(trimethyltin)‐4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene (BDT‐EH), denoted PTB‐DCB21] and the nonfunctionalized polymer [a polymer composed of thieno[3,4‐b]thiophene (TT) and benzo[1,2‐b:4,5‐b′]dithiophene (BDT), denoted PTB‐BO], a higher power conversion efficiency for PTB‐DCB21 (8.7 %) than that for PTB‐BO (7.4 %) is achieved because of a higher photocurrent and voltage. The high efficiency is even obtained without including additives, such as lithium bis(trifluoromethanesulfonyl)imide and/or 4‐tert‐butylpyridine, that are commonly used to improve the conductivity of the HTM. Transient photocurrent–voltage studies show that the PTB‐DCB21‐based device exhibits faster electron transport and slower charge recombination; this might be related to better interfacial contact through intermolecular chemical interactions between the perovskite and the 3,4‐dichlorobenzyl group in PTB‐DCB21.  相似文献   

14.
We report on the interaction of Lewis acids with narrow band gap conjugated copolymers containing donor and acceptor units. Examination of the widely used poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-(diyl-alt-benzo[2,1,3]thiadiazole)-4,7-diyl] (1) shows weaker binding with B(C(6)F(5))(3) when compared with a small molecule that contains a cyclopenta-[2,1-b:3,4-b']dithiophene (CDT) unit flanked by two benzo[2,1,3]thiadiazole (BT) fragments. Studies on model compounds representative of 1, together with a comparison between B(C(6)F(5))(3) and BBr(3), indicate that the propensity for Lewis acid coordination is decreased because of steric encumbrance surrounding the BT nitrogen sites. These observations led to the design of chromophores that incorporate an acceptor unit with a more basic nitrogen site, namely pyridal[2,1,3]thiadiazole (PT). That this strategy leads to a stronger B-N interaction was demonstrated through the examination of the reaction of B(C(6)F(5))(3) with two small molecules bis(4,4-bis(hexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-4,7-pyridal[2,1,3]thiadiazole (8) and bis{2-thienyl-(4,4-bis(hexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)}-4,7-pyridal[2,1,3]thiadiazole (9) and two polymer systems (poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-diyl-alt-([1,2,5]thiadiazolo[3,4-c]pyridine)-4,7-diyl] (10) and poly[(4,4-bis(2-ethylhexyl)cyclopenta-[2,1-b:3,4-b']dithiophene)-2,6-diyl-alt-(4',7'-bis(2-thienyl)-[1,2,5]thiadiazolo[3,4-c]pyridine)-5,5-diyl] (11). From a materials perspective, it is worth pointing out that through the binding of B(C(6)F(5))(3), new NIR-absorbing polymers can be generated with band gaps from 1.31 to 0.89 eV. A combination of studies involving ultraviolet photoemission spectroscopy and density functional theory shows that the narrowing of the band gap upon borane coordination to the pyridal nitrogen on PT is a result of lowering the energies of both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the optically relevant fragments; however, the LUMO is decreased to a greater extent, thereby giving rise to the narrowing of the gap.  相似文献   

15.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

16.
Novel conjugated polymers composed of benzo[1,2‐b:4,5‐b′]dithiophene and thieno[3,4‐b]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2‐d]imidazole units are synthesized by Stille polycondensation. The resulting polymers display a longer wavelength absorption and well‐defined redox activities. The effective intramolecular charge‐transfer and energy levels of all polymers are elucidated by computational calculations. Bulk‐heterojunction solar cells based on these polymers as p‐type semiconductors and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as an n‐type semiconductor are fabricated, and their photovoltaic performances are for the first time evaluated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1067–1075  相似文献   

17.
The synthesis of benzo[b]triphenyleno[2,1-d]thiophene ( 9 ), benzo[b]triphenyleno[1,2-d]thiophene ( 13 ), 5-methylbenz[7,8]anthra[2,1-b]thiophene ( 17 ), l-methylchryseno[3,4-b]thiophene ( 18 ), triphenyleno[1,2-c]dibenzothiophene ( 22 ), triphenyleno[2,1-a]dibenzothiophene ( 26 ), triphenyleno[1,2-a]dibenzothiophene ( 29 ), and triphenyleno[2,1-b]dibenzothiophene ( 30 ) is described.  相似文献   

18.
Bulk heterojunction organic solar cells based on active layer of PTB7-Fx (x?=?0–100), conjugated block copolymer incorporating benzo[1,2-b:4,5-b′]dithiophene and partly fluorinated thieno[3,4-b]thiophene units, and fullerene derivatives as phenyl C61 and phenyl C71 butyric acid methyl esters sandwiched between a transparent anode of indium tin oxide, a hole conducting layer of either poly(ethylene dioxythiophene) : polystyrene sulfonate or magnetron-sputtered molybdenum oxide and evaporated aluminum cathodes were fabricated. Polymer-organic thin films were prepared at 1:1.5 mass ratio of the donor:acceptor mixture and deposited from dichlorobenzene solution of different concentrations by spin coating in ambient conditions. To control the active layer morphology, the films were subjected either to post-deposition treatments (annealing) at different temperatures or incorporation of an additive such as diiodooctane. Optical transmission, film surface topography and thickness measurements were used to characterize the active layer. Test devices with the architecture described above were prepared and their current–voltage characteristics, quantum efficiency and impedance spectra were measured and used to compare the different active layers, architectures and deposition sequences.  相似文献   

19.
The synthesis of benzo[b]phenanthro[1,2-d]thiphene ( 1 ), benzo[b]phenanthro[4,3-d]thiophene ( 2 ), benzo-[b]phenanthro[2,1-d]thiophene ( 3 ) and benzo[b]phenanthro[3,4-d]thiophene ( 4 ) from appropriately substituted olefines by photochemical cyclodehydrogenation is described. The photolysis of olefin 9 gave a mixture of 4 and anthra[1,2-b]benzo[d]thiophene ( 5 ).  相似文献   

20.
The synthesis of both isomers of benzo[1,2]phenaleno[bc]thiophene namely, benzo[1,2]phenaleno[3,4-bc]-thiophene and benzo[1,2]phenaleno[4,3-bc]thiophene is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号