首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Hydroxyl terminated poly(dimethylsiloxane) (PDMS-HT) is used as an electrolyte additive in electrolyte systems containing 1 M LiPF6 in EC:DMC (ratios 1:9; 3:7; 4:6 and 1:1 v/v) to enhance the cycle performance of lithium-ion batteries. Adding a small amount of PDMS-HT to the standard LIB electrolyte leads to improved specific capacity as well as improved capacity retention over prolonged cycles. There is also a slight increase in Li+ ion conductivity when PDMS-HT is added. Also, the PDMS-HT additive allows the formation of a more stable solid electrolyte interface (SEI) layer that enables the LIB cells to be cycled for longer cycles with minimal capacity fading. This combination of improved ionic conductivity and stable SEI layer formation due to the PDMS-HT additive, makes it an excellent candidate for an electrolyte additive for lithium ion batteries.  相似文献   

2.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

3.
A new amorphous comblike polymer (CBP) based on methylvinyl ether/maleic anhydride altering copolymer backbone and on oligooxyethylene side chain was synthesized. The dynamic mechanical properties of CBP and its Li salt complexes were investigated by means of DDV-ll-EA type viscoelastic spectrometry. Results showed that there were two glass transitions (-transition and β-transition) in the temperature range from − 100 to 100 °C. The β-transition was assigned to oligo-PEO side chains and the temperature of β-transition increases with increasing Li salt content. The -transition was assigned to the main chain of CBP. The temperature of the -transition (T) is also dependent upon the Li-salt content, but not monotonie. The value of T lies between 30–45 °C in the Li salt concentration range studied, near room temperature. It was found that the CBP-Li salt complexes showed an unusual dependence of ionic conductivity on Li salt content. There are two peaks in the plot of the ionic conductivity vs. Li salt concentration, which has been ascribed to the movability of the CBP main chain at ambient temperature. The temperature dependence of the ionic conductivity indicated that the Arrhenius relationship was not obeyed, and the plot of log σ against 1/(TT0) showed the unusual dual VTF behavior when using side chain glass transition temperature (Tβ) as T0.  相似文献   

4.
The effects of cobalt addition (0.5 and 1 wt.%) on densification and ionic conductivity of Ce0.9Sm0.1O1.95 (10SDC) and Ce0.9Sm0.075Y0.025O1.95 (2.5Y-SDC) have been studied. X-ray diffraction (XRD) showed that Co had changed to Co3O4 and Co3O4 + CoO after firing at 900 °C and 1300 °C respectively. The addition of Co promoted densification to occur at lower temperatures with a more uniform grain growth and greatly improved both grain boundary and bulk conductivity for 10SDC. Significant improvement of grain boundary for the 2.5Y-SDC samples was obtained, even at 1300 °C sintering, while bulk conductivity was slightly improved. Rapid grain growth along with improvement of ionic conductivity was observed when the samples were sintered further at higher temperature. Superior ionic conductivity of the 2.5Y-SDC samples with Co addition to that of the bare 10SDC suggested the potential use of Co as the co-dopant in this system to reduce the content of costly rare earth usage.  相似文献   

5.
液态固体电解质材料的离子电导率低,安全性问题在一定程度上限制了其发展与应用,而固体电解质材料在室温下具有很好的稳定性和高的离子电导率值,具有较好的应用前景.本文采用机械化学球磨法制备固体电解质Rb4Cu16I7Cl13粉末,探索制备工艺和球磨参数,对其晶体结构进行解析、观察粉体微观结构、通过交流阻抗谱及等效电路分析得到了离子电导率与活化能、并详细探讨其离子传导性能与晶体结构的关系以及化学成分稳定性进行研究.实验结果表明,在480 rpm转速下球磨6 h时可得到纯的固体电解质Rb4Cu16I7Cl13物相.粉体晶粒尺寸分布均匀,均在20 nm-400 nm之间,室温下固体电解质Rb4Cu16I7Cl13离子电导率可达到0.213 S/cm且活化能为0.087(9)eV.在真空干燥条件下存放5天和12天后观察了微观形貌和化学稳定性...  相似文献   

6.
Apatite silicates have recently been reported as promising electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this work, a series of apatite-type compounds La9.67Si6-xAlxO26.5-x/2 (LSAO) with x = 0-2 are synthesized by the sol-gel process at calcining temperature of 800-900 °C. Thermal expansion coefficient, relative density and electrical conductivity of these samples with different Al doped contents are investigated. A symmetrical cell, which is composed of La9.67Si5AlO26 electrolyte and (La0.74Bi0.10Sr0.16)MnO3+δ (LBSM) cathode, is fabricated and electrochemically characterized. LBSM cathode shows a good electrochemical performance, which proves LBSM to be a promising candidate cathode for LSAO-based electrolyte.  相似文献   

7.
M. Sundar  S. Selladurai 《Ionics》2006,12(4-5):281-286
A solid polymer electrolyte (SPE) film consisting of poly(ethylene oxide) (PEO) with magnesium chloride as electrolytic salt and B2O3 as the filler has been prepared by solution casting technique. The polymeric film was flexible and self-standing with proper mechanical strength and studied for application in a solid-state rechargeable magnesium battery. The interactions between the filler and PEO chains are studied by differential scanning calorimeter and Fourier transform infrared techniques. Composition of SPE is optimized, and maximum conductivity is obtained at 2 wt% B2O3. Filler seems to increase the number of free magnesium cations by decoordinating the bond between magnesium cations and ether oxygen of PEO. Cyclic voltammetry results show the reversible capability of magnesium electrode. Solid-state magnesium cell employing magnesium anode, SPE, and manganese oxide was assembled, and its open circuit voltage is found to be 1.9 V.  相似文献   

8.
Glassy solid electrolytes were prepared by combining the 50Li2SO4·50Li3BO3 (mol%) ionic glass and the 1-ethyl-3-methyl-imidazolium tetrafluoroborate ([EMI]BF4) ionic liquid. High-energy ball milling was carried out for the mixture of the inorganic ionic glass and the organic ionic liquid. The ambient temperature conductivity of the glass electrolyte with 10 mol% [EMI]BF4 was 10−4 S cm−1, which was three orders of magnitude higher than that of the 50Li2SO4·50Li3BO3 glass. The addition of [EMI]BF4 to the ionic glass decreased glass transition temperature (Tg) of the glass and the decrease of Tg is closely related to the enhancement of conductivity of the glass. Morphology and local structure of the glass electrolyte was characterized. The dissolution of an ionic liquid in an ionic glass with Li+ ion conductivity is a novel way to developing glass electrolytes for all-solid-state lithium secondary batteries.  相似文献   

9.
The ionic conductivity, σ, of mixtures of poly(ethylene oxide) (PEO) and lithium bis(trifluoromethanesulfone)imide (LiTFSI) was measured as a function of molecular weight of the PEO chains, M, over the range 0.2-5000 kg/mol. Our data are consistent with an expression σ = σ0 + K/M proposed by Shi and Vincent [Solid State Ionics 60 (1993)] where σ0 and K are exponential and linear functions of inverse temperature respectively. Explicit expressions for σ0 and K are provided.  相似文献   

10.
We present a comparative analysis of the orderdisorder transitions in Ln2(M2  xLnx)O7  δ (Ln = SmLu; M = Ti, Zr, Hf; x = 0, 0.096) pyrochlore-like compounds and solid solutions existing in the Ln2O3MO2 systems. In the range ~ 6001200 °C, Ln2Ti2O7 (Ln = SmLu) and Ln2Zr2O7 (Ln = SmGd) undergo ordering transitions, F? → PI → P, which culminate in the formation of an ideal pyrochlore structure, P, existing between 1100 and 1300 °C. Above 1300 °C, Ln2Ti2O7 (Ln = GdLu), Ln2Zr2O7 (Ln = SmGd) and Ln2Hf2O7 (Ln = EuTb) exist as oxygen-ion-conducting phases, PII, disordered in both the oxygen and cation sublattices. Ionic conductivity data for Ln2(M2  xLnx)O7  δ (Ln = SmLu; M = Ti, Zr, Hf; x = 0, 0.096) synthesized at 1600-1670 °C indicate that the highest conductivity in these systems is typically offered by nominally stoichiometric (Ln:M = 1:1), disordered Ln2M2O7 (Ln = SmLu; M = Ti, Zr, Hf) pyrochlores containing anti-structure pairs (LnM' + MLn) and oxygen vacancies (VO••) on the 48f (O2) site. The highest conductivity of Yb2Ti2O7, in which the cations have the smallest radii among the lanthanides and Group IVa metals, seems to be due to the increased role of the geometric factor in the Ln2Ti2O7 (Ln = Sm-Lu) pyrochlores with predominantly covalent metaloxygen bonding M-O (Ti-O). The ion transport parameters in these materials are determined primarily by the relationship between the sizes of the mobile oxygen ions and conduction channels.  相似文献   

11.
In this work we studied the ionic conductivity for three copolymers of the title co-monomers as a function of LiClO4 content, temperature and ambient relative humidity. We also investigated the interactions between the salt and the co-monomer blocks in the copolymers and its effect on the morphology and thermal properties of the copolymer/salt complexes. Our data indicate that the Li+ ion predominantly interacts with the ethylene oxide repeating units of the copolymers. The copolymer with the highest ionic conductivity was obtained with an ethylene oxide/epichlorohydrin ratio of 84/16 containing 5.5% (w/w) of LiClO4. It showed a conductivity of 4.1×10−5 S cm−1 (30°C, humidity< 1 ppm) and 2.6×10−4 S cm−1 at 84% relative humidity (24°C). The potential stability window of the copolymer/salt complex is 4.0 V, as measured by cyclic voltammetry. For comparison, we also prepared a blend of the corresponding homopolymers containing LiClO4; it showed higher crystallinity and lower ionic conductivity.  相似文献   

12.
This paper reports the preparation and characterization of novel thin film electrolytes by UV cross-linking of poly(propylene glycol) diacrylate in the presence of polyetheramine (glyceryl poly(oxypropylene)triamine) and LiTFSI. The oligomeric surfactant polyetheramine facilitates self-assembly of the electrolyte, enabling it to be applied conformally onto a complex substrate which is necessary for 3D-microbatteries, while the acrylate network supplies mechanical stability. Conformal coatings onto LiFePO4 electrodes and Cu nanopillars were confirmed by SEM. Ionic conductivities of 3.5 × 10− 6 and 5.8 × 10− 5 S/cm were measured at room temperature and 60 °C, respectively, at Li:O = 1:20 and PEA:PPGDA = 2:1 ratios. The electrochemical stability window test showed that the electrolyte is stable above 5.0 V vs. Li/Li+. Thermal analyses by TGA and DSC demonstrated that the polymer electrolyte is amorphous and thermally stable up to 300 °C.  相似文献   

13.
A series of cross-linked network polysiloxanes containing oligoethylene oxide units, (OCH2CH2)n, as internal free chains have been synthesized by performing hydrosilylation of partially PEO-substituted polysiloxane precursor with , ω-diallyl terminated poly(ethylene glycol). The polymer electrolytes were formed by complexing with LiN(CF3SO2)2 electrolyte salt and exhibited superior conductive property. The σRT of the network polymer electrolytes is in the range of 2.50×10−5 to 1.62×10−4 S/cm and depends on the cross-linking density (in terms of Si–H amount of the siloxane precursor), repeating unit number of internal oligoethylene oxide and chain length of the cross-linker. The significant enhancement of the conductivity was observed when low molecular weight dimethyl poly(ethylene glycol) was added as plasticizer. The temperature dependence of the ionic conductivity was also studied, following the Vogel–Tamman–Fulcher (VTF) equation.  相似文献   

14.
A new series of blended polymer electrolytes based on a boroxine polymer (BP) with poly(ethylene oxide) (PEO), an ethylene oxide–propylene oxide copolymer or poly(methyl methacrylate) were prepared. Good room temperature mechanical properties were exhibited by electrolytes containing in excess of 30% PEO. Cationic transference number measurements indicated that a slight improvement in lithium ion conductivity could be achieved by using a mixture of LiCF3SO3 and LiN(CF3SO2)2 as the electrolyte salt. Electrolytes incorporating significant proportions of BP exhibited reduced lithium–polymer electrolyte interfacial resistance.  相似文献   

15.
Layer-type oxide NaxMx/2IITi1−x/2IVO2 (M=Co, Ni; 0.60≤x≤1.0) has been prepared by solid state reactions. In both series, two structural variants of type -NaFeO2 (O3) and β-RbScO2 (P2) have been obtained consecutively as x decreases with a borderline composition around xc0.7. With the decrease of x, the ionic conductivity has been found to increase up to 8.4×10−2 S cm−1 at 770 K (Na0.67Co0.33Ti0.67O2). Compositions of P2 have been found to exhibit the conductivity values two to five times greater than those of O3, primarily due to the larger rectangular threshold available for the diffusion of Na+ ions. Such a structural effect has also been considered to depend on the polarizability of alkali ion. HT-XRD and 23Na-NMR data of Na0.67Co0.33Ti0.67O2 strongly suggest that the diffusion of Na+ ion is deeply related with the local distortion of trigonal prismatic sites, leading to the change of activation energy around 430 K.  相似文献   

16.
通过溶液浇注法制备了一种polymer in salt型PVA KOH H2O聚合物电解质.对该电解质进行了X射线衍射、热性质及电化学性质测试与分析.X射线衍射显示PVA和KOH在聚合物电解质中均以非晶态存在.随着KOH含量的增加,聚合物的玻璃转化点温度逐渐上升,而电解质电导率也随之增加.该电解质的电化学窗口可达1.4V,阻抗测试显示当电解质组成PVA/KOH为1/3(质量比)时,室温电导率可达0.15S/cm,电导率与温度关系符合Arrhenius方程.该电解质热力学稳定性好,机械强度高、电化学性质优越.  相似文献   

17.
    
《Current Applied Physics》2018,18(6):619-625
Blend polymer composite gel electrolytesare prepared using thepoly vinyledene fluoride (PVDF), polymethyl methacrylate (PMMA) with alumina (Al2O3) in variance of alkali metal iodide saltsystem. The alumina doped blend polymer electrolytes characterized by the XRD diffraction and FT-IR spectra. This is supportive to the conformation of the crystallinity behaviour and the composite formation.The high-resolution scanning electron microscopy (HR-SEM) have used to find the composite electrolyte membrane porous size (10 μm) and it has support to understand the morphological structure of the membrane. To analyze the ionic conductivity of the potassium iodide based composite polymer electrolyte by the impedance measurements, which is 4.62 × 10−3 Scm−1 at room temperature. Finally, different alkali metal iodide based dye-sensitized solar cells (DSSCs) fabricated and monitored an energy conversion efficiency.  相似文献   

18.
We have focused on the PEG-borate ester as a new type of plasticizer for solid polymer electrolyte composed of poly(ethyleneglycol) methacrylate (PEGMA) and lithium bis-trifluoromethanesulfonimide (LiTFSI). The PEG-borate ester shows good thermal stability and high flash point. Ionic conductivity of the polymer electrolyte increases with increasing amount of the PEG-borate ester and exhibits values greater than 10−4 S cm−1 at 30 °C and 10−3 S cm−1 at 60 °C. Furthermore, PEG-borate ester has three EO chains whose lengths are variable, and various ionic conductivities are expected to depend on EO chain length. As a result, polymer electrolyte containing the PEG-borate ester whose EO chain length is n=3 shows highest ionic conductivity. Furthermore, polymer electrolytes containing PEG-borate esters show excellent thermal and electrochemical stability. The electrolytes are thermally stable up to 300 °C and electrochemically up to 4.5 V vs. Li+/Li.  相似文献   

19.
Raman spectra of the KTP single crystal are recorded in electric fields (dc and ac) applied along the polar axis c. Spectra with the laser beam focused near the cathode end, anode end and the centre of the crystal are recorded. The cathode end of the crystal develops a spot ‘grey track’ where the laser beam is focused after a lapse of 5 h from the application of a dc electric field of 38 V/cm. The spectra recorded at the cathode end after the application of field show variations in intensity of bands. A new band appears at 177 cm−1. Changes in band intensities are explained on the basis of changes in polarizability of the crystal due to the movement of K+ ions along the polar axis. K+ ions accumulate at the cathode end, where the ‘Grey track’ formation occurs. The intensity enhancement observed for almost all bands in the ac field is attributed to the improvement of crystalline quality.  相似文献   

20.
The formation of Co films on polycrystalline copper in diluted sulphuric acid was investigated by employing cyclic voltammetry (CV), atomic force microscopy, and in-situ magneto-optic Kerr effect (MOKE) techniques. By comparing CV measurements in the pure supporting electrolyte (11 mM K2SO4/1 mM H2SO4) and the cobalt sulphate solution (10 mM K2SO4/1 mM H2SO4/1 mM CoSO4), peaks from voltammetric cycling for copper dissolution, readsorption of dissolved copper ions, cobalt bulk dissolution and oxidation of hydrogen could be resolved. As the electroplating time increases, the size of the Co clusters increases and the deposition of Co corresponds to island growth. The first hysteresis loop occurs at a Co thickness of 0.33 nm in the longitudinal configuration. For films thinner than 7 nm, the Kerr intensity increases linearly because the Curie temperature of the film is well above 300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号